Timezone: »

Disentangling factors of variation in deep representation using adversarial training
Michael Mathieu · Junbo Jake Zhao · Junbo (Jake) Zhao · Aditya Ramesh · Pablo Sprechmann · Yann LeCun

Mon Dec 05 09:00 AM -- 12:30 PM (PST) @ Area 5+6+7+8 #135 #None

We propose a deep generative model for learning to distill the hidden factors of variation within a set of labeled observations into two complementary codes. One code describes the factors of variation relevant to solving a specified task. The other code describes the remaining factors of variation that are irrelevant to solving this task. The only available source of supervision during the training process comes from our ability to distinguish among different observations belonging to the same category. Concrete examples include multiple images of the same object from different viewpoints, or multiple speech samples from the same speaker. In both of these instances, the factors of variation irrelevant to classification are implicitly expressed by intra-class variabilities, such as the relative position of an object in an image, or the linguistic content of an utterance. Most existing approaches for solving this problem rely heavily on having access to pairs of observations only sharing a single factor of variation, e.g. different objects observed in the exact same conditions. This assumption is often not encountered in realistic settings where data acquisition is not controlled and labels for the uninformative components are not available. In this work, we propose to overcome this limitation by augmenting deep convolutional autoencoders with a form of adversarial training. Both factors of variation are implicitly captured in the organization of the learned embedding space, and can be used for solving single-image analogies. Experimental results on synthetic and real datasets show that the proposed method is capable of disentangling the influences of style and content factors using a flexible representation, as well as generalizing to unseen styles or content classes.

Author Information

Michael Mathieu (NYU)
Junbo Zhao (NYU)
Junbo (Jake) Zhao (NYU)
Aditya Ramesh (NYU)
Pablo Sprechmann (New York University)
Yann LeCun (NYU)

Yann LeCun is Director of AI Research at Facebook, and Silver Professor of Data Science, Computer Science, Neural Science, and Electrical Engineering at New York University. He received the Electrical Engineer Diploma from ESIEE, Paris in 1983, and a PhD in Computer Science from Université Pierre et Marie Curie (Paris) in 1987. After a postdoc at the University of Toronto, he joined AT&T Bell Laboratories in Holmdel, NJ in 1988. He became head of the Image Processing Research Department at AT&T Labs-Research in 1996, and joined NYU as a professor in 2003, after a brief period as a Fellow of the NEC Research Institute in Princeton. From 2012 to 2014 he directed NYU's initiative in data science and became the founding director of the NYU Center for Data Science. He was named Director of AI Research at Facebook in late 2013 and retains a part-time position on the NYU faculty. His current interests include AI, machine learning, computer perception, mobile robotics, and computational neuroscience. He has published over 180 technical papers and book chapters on these topics as well as on neural networks, handwriting recognition, image processing and compression, and on dedicated circuits for computer perception.

More from the Same Authors