Timezone: »
Poster
Maximal Sparsity with Deep Networks?
Bo Xin · Yizhou Wang · Wen Gao · David Wipf · Baoyuan Wang
The iterations of many sparse estimation algorithms are comprised of a fixed linear filter cascaded with a thresholding nonlinearity, which collectively resemble a typical neural network layer. Consequently, a lengthy sequence of algorithm iterations can be viewed as a deep network with shared, hand-crafted layer weights. It is therefore quite natural to examine the degree to which a learned network model might act as a viable surrogate for traditional sparse estimation in domains where ample training data is available. While the possibility of a reduced computational budget is readily apparent when a ceiling is imposed on the number of layers, our work primarily focuses on estimation accuracy. In particular, it is well-known that when a signal dictionary has coherent columns, as quantified by a large RIP constant, then most tractable iterative algorithms are unable to find maximally sparse representations. In contrast, we demonstrate both theoretically and empirically the potential for a trained deep network to recover minimal $\ell_0$-norm representations in regimes where existing methods fail. The resulting system, which can effectively learn novel iterative sparse estimation algorithms, is deployed on a practical photometric stereo estimation problem, where the goal is to remove sparse outliers that can disrupt the estimation of surface normals from a 3D scene.
Author Information
Bo Xin (Peking University)
Yizhou Wang (Peking University)
Wen Gao (peking university)
David Wipf (Microsoft Research)
Baoyuan Wang (Microsoft Research)
More from the Same Authors
-
2021 Spotlight: On the Value of Infinite Gradients in Variational Autoencoder Models »
Bin Dai · Li Wenliang · David Wipf -
2022 Poster: MATE: Benchmarking Multi-Agent Reinforcement Learning in Distributed Target Coverage Control »
Xuehai Pan · Mickel Liu · Fangwei Zhong · Yaodong Yang · Song-Chun Zhu · Yizhou Wang -
2021 Poster: A Biased Graph Neural Network Sampler with Near-Optimal Regret »
Qingru Zhang · David Wipf · Quan Gan · Le Song -
2021 Poster: GRIN: Generative Relation and Intention Network for Multi-agent Trajectory Prediction »
Longyuan Li · Jian Yao · Li Wenliang · Tong He · Tianjun Xiao · Junchi Yan · David Wipf · Zheng Zhang -
2021 Poster: From Canonical Correlation Analysis to Self-supervised Graph Neural Networks »
Hengrui Zhang · Qitian Wu · Junchi Yan · David Wipf · Philip S Yu -
2021 Poster: Post-Training Quantization for Vision Transformer »
Zhenhua Liu · Yunhe Wang · Kai Han · Wei Zhang · Siwei Ma · Wen Gao -
2021 Poster: On the Value of Infinite Gradients in Variational Autoencoder Models »
Bin Dai · Li Wenliang · David Wipf -
2021 Poster: MAU: A Motion-Aware Unit for Video Prediction and Beyond »
Zheng Chang · Xinfeng Zhang · Shanshe Wang · Siwei Ma · Yan Ye · Xiang Xinguang · Wen Gao -
2020 Poster: Learning Multi-Agent Coordination for Enhancing Target Coverage in Directional Sensor Networks »
Jing Xu · Fangwei Zhong · Yizhou Wang -
2019 Poster: L_DMI: A Novel Information-theoretic Loss Function for Training Deep Nets Robust to Label Noise »
Yilun Xu · Peng Cao · Yuqing Kong · Yizhou Wang -
2018 : Poster Session 1 + Coffee »
Tom Van de Wiele · Rui Zhao · J. Fernando Hernandez-Garcia · Fabio Pardo · Xian Yeow Lee · Xiaolin Andy Li · Marcin Andrychowicz · Jie Tang · Suraj Nair · Juhyeon Lee · Cédric Colas · S. M. Ali Eslami · Yen-Chen Wu · Stephen McAleer · Ryan Julian · Yang Xue · Matthia Sabatelli · Pranav Shyam · Alexandros Kalousis · Giovanni Montana · Emanuele Pesce · Felix Leibfried · Zhanpeng He · Chunxiao Liu · Yanjun Li · Yoshihide Sawada · Alexander Pashevich · Tejas Kulkarni · Keiran Paster · Luca Rigazio · Quan Vuong · Hyunggon Park · Minhae Kwon · Rivindu Weerasekera · Shamane Siriwardhanaa · Rui Wang · Ozsel Kilinc · Keith Ross · Yizhou Wang · Simon Schmitt · Thomas Anthony · Evan Cater · Forest Agostinelli · Tegg Sung · Shirou Maruyama · Alexander Shmakov · Devin Schwab · Mohammad Firouzi · Glen Berseth · Denis Osipychev · Jesse Farebrother · Jianlan Luo · William Agnew · Peter Vrancx · Jonathan Heek · Catalin Ionescu · Haiyan Yin · Megumi Miyashita · Nathan Jay · Noga H. Rotman · Sam Leroux · Shaileshh Bojja Venkatakrishnan · Henri Schmidt · Jack Terwilliger · Ishan Durugkar · Jonathan Sauder · David Kas · Arash Tavakoli · Alain-Sam Cohen · Philip Bontrager · Adam Lerer · Thomas Paine · Ahmed Khalifa · Ruben Rodriguez · Avi Singh · Yiming Zhang -
2017 : Poster Session »
David Abel · Nicholas Denis · Maria Eckstein · Ronan Fruit · Karan Goel · Joshua Gruenstein · Anna Harutyunyan · Martin Klissarov · Xiangyu Kong · Aviral Kumar · Saurabh Kumar · Miao Liu · Daniel McNamee · Shayegan Omidshafiei · Silviu Pitis · Paulo Rauber · Melrose Roderick · Tianmin Shu · Yizhou Wang · Shangtong Zhang -
2017 : Spotlights & Poster Session »
David Abel · Nicholas Denis · Maria Eckstein · Ronan Fruit · Karan Goel · Joshua Gruenstein · Anna Harutyunyan · Martin Klissarov · Xiangyu Kong · Aviral Kumar · Saurabh Kumar · Miao Liu · Daniel McNamee · Shayegan Omidshafiei · Silviu Pitis · Paulo Rauber · Melrose Roderick · Tianmin Shu · Yizhou Wang · Shangtong Zhang -
2017 Oral: From Bayesian Sparsity to Gated Recurrent Nets »
Hao He · Bo Xin · Satoshi Ikehata · David Wipf -
2017 Poster: From Bayesian Sparsity to Gated Recurrent Nets »
Hao He · Bo Xin · Satoshi Ikehata · David Wipf -
2016 Poster: A Pseudo-Bayesian Algorithm for Robust PCA »
Tae-Hyun Oh · Yasuyuki Matsushita · In So Kweon · David Wipf -
2016 Poster: Deep Alternative Neural Network: Exploring Contexts as Early as Possible for Action Recognition »
Jinzhuo Wang · Wenmin Wang · xiongtao Chen · Ronggang Wang · Wen Gao -
2013 Poster: Non-Uniform Camera Shake Removal Using a Spatially-Adaptive Sparse Penalty »
Haichao Zhang · David Wipf -
2013 Oral: Non-Uniform Camera Shake Removal Using a Spatially-Adaptive Sparse Penalty »
Haichao Zhang · David Wipf