Timezone: »
We present an effective method for supervised feature construction. The main goal of the approach is to construct a feature representation for which a set of linear hypotheses is of sufficient capacity -- large enough to contain a satisfactory solution to the considered problem and small enough to allow good generalization from a small number of training examples. We achieve this goal with a greedy procedure that constructs features by empirically fitting squared error residuals. The proposed constructive procedure is consistent and can output a rich set of features. The effectiveness of the approach is evaluated empirically by fitting a linear ridge regression model in the constructed feature space and our empirical results indicate a superior performance of our approach over competing methods.
Author Information
Dino Oglic (University of Bonn)
Thomas Gärtner (The University of Nottingham)
More from the Same Authors
-
2022 Spotlight: Lightning Talks 2A-3 »
David Buterez · Chengan He · Xuan Kan · Yutong Lin · Konstantin Schürholt · Yu Yang · Louis Annabi · Wei Dai · Xiaotian Cheng · Alexandre Pitti · Ze Liu · Jon Paul Janet · Jun Saito · Boris Knyazev · Mathias Quoy · Zheng Zhang · James Zachary · Steven J Kiddle · Xavier Giro-i-Nieto · Chang Liu · Hejie Cui · Zilong Zhang · Hakan Bilen · Damian Borth · Dino Oglic · Holly Rushmeier · Han Hu · Xiangyang Ji · Yi Zhou · Nanning Zheng · Ying Guo · Pietro Liò · Stephen Lin · Carl Yang · Yue Cao -
2022 Spotlight: Graph Neural Networks with Adaptive Readouts »
David Buterez · Jon Paul Janet · Steven J Kiddle · Dino Oglic · Pietro Liò -
2022 : Achievements and Challenges Part 1/2 »
Dimitris Vlitas · Dino Oglic -
2022 Workshop: Synthetic Data for Empowering ML Research »
Mihaela van der Schaar · Zhaozhi Qian · Sergul Aydore · Dimitris Vlitas · Dino Oglic · Tucker Balch -
2022 Poster: Graph Neural Networks with Adaptive Readouts »
David Buterez · Jon Paul Janet · Steven J Kiddle · Dino Oglic · Pietro Liò -
2017 Poster: Effective Parallelisation for Machine Learning »
Michael Kamp · Mario Boley · Olana Missura · Thomas Gärtner -
2016 : Introduction »
Fabrizio Costa · Andrea Passerini · Thomas Gärtner · Francois Pachet -
2016 Workshop: Constructive Machine Learning »
Fabrizio Costa · Thomas Gärtner · Andrea Passerini · Francois Pachet