Timezone: »
Building discriminative representations for 3D data has been an important task in computer graphics and computer vision research. Convolutional Neural Networks (CNNs) have shown to operate on 2D images with great success for a variety of tasks. Lifting convolution operators to 3D (3DCNNs) seems like a plausible and promising next step. Unfortunately, the computational complexity of 3D CNNs grows cubically with respect to voxel resolution. Moreover, since most 3D geometry representations are boundary based, occupied regions do not increase proportionately with the size of the discretization, resulting in wasted computation. In this work, we represent 3D spaces as volumetric fields, and propose a novel design that employs field probing filters to efficiently extract features from them. Each field probing filter is a set of probing points -- sensors that perceive the space. Our learning algorithm optimizes not only the weights associated with the probing points, but also their locations, which deforms the shape of the probing filters and adaptively distributes them in 3D space. The optimized probing points sense the 3D space "intelligently", rather than operating blindly over the entire domain. We show that field probing is significantly more efficient than 3DCNNs, while providing state-of-the-art performance, on classification tasks for 3D object recognition benchmark datasets.
Author Information
Yangyan Li (Stanford University)
Soeren Pirk (Stanford University)
Hao Su (Stanford University)
Charles R Qi (Stanford University)
Charles Ruizhongtai Qi is a PhD candidate at Stanford University, working on machine learning/deep learning, computer vision and 3D understanding.
Leonidas Guibas (Stanford University)
More from the Same Authors
-
2021 : ManiSkill: Generalizable Manipulation Skill Benchmark with Large-Scale Demonstrations »
Tongzhou Mu · Zhan Ling · Fanbo Xiang · Derek Yang · Xuanlin Li · Stone Tao · Zhiao Huang · Zhiwei Jia · Hao Su -
2021 : From One Hand to Multiple Hands: Imitation Learning for Dexterous Manipulation from Single-Camera Teleoperation »
Yuzhe Qin · Hao Su · Xiaolong Wang -
2022 : Breaking the Symmetry: Resolving Symmetry Ambiguities in Equivariant Neural Networks »
Sidhika Balachandar · Adrien Poulenard · Congyue Deng · Leonidas Guibas -
2023 Poster: NeRF Revisited: Fixing Quadrature Instability in Volume Rendering »
Mikaela Angelina Uy · Guandao Yang · Kiyohiro Nakayama · Leonidas Guibas · Ke Li -
2023 Poster: NAP: Neural 3D Articulation Prior »
Jiahui Lei · Congyue Deng · William B Shen · Leonidas Guibas · Kostas Daniilidis -
2023 Poster: Banana: Banach Fixed-Point Network for Pointcloud Segmentation with Inter-Part Equivariance »
Congyue Deng · Jiahui Lei · William B Shen · Kostas Daniilidis · Leonidas Guibas -
2022 Poster: NeuForm: Adaptive Overfitting for Neural Shape Editing »
Connor Lin · Niloy Mitra · Gordon Wetzstein · Leonidas Guibas · Paul Guerrero -
2022 Poster: Object Scene Representation Transformer »
Mehdi S. M. Sajjadi · Daniel Duckworth · Aravindh Mahendran · Sjoerd van Steenkiste · Filip Pavetic · Mario Lucic · Leonidas Guibas · Klaus Greff · Thomas Kipf -
2021 Poster: Stabilizing Deep Q-Learning with ConvNets and Vision Transformers under Data Augmentation »
Nicklas Hansen · Hao Su · Xiaolong Wang -
2021 Poster: Intrinsic Dimension, Persistent Homology and Generalization in Neural Networks »
Tolga Birdal · Aaron Lou · Leonidas Guibas · Umut Simsekli -
2021 Poster: Accurately Solving Rod Dynamics with Graph Learning »
Han Shao · Tassilo Kugelstadt · Torsten Hädrich · Wojtek Palubicki · Jan Bender · Soeren Pirk · Dominik L Michels -
2021 Poster: Revisiting 3D Object Detection From an Egocentric Perspective »
Boyang Deng · Charles R Qi · Mahyar Najibi · Thomas Funkhouser · Yin Zhou · Dragomir Anguelov -
2021 Poster: Leveraging SE(3) Equivariance for Self-supervised Category-Level Object Pose Estimation from Point Clouds »
Xiaolong Li · Yijia Weng · Li Yi · Leonidas Guibas · A. Abbott · Shuran Song · He Wang -
2021 Poster: Particle Cloud Generation with Message Passing Generative Adversarial Networks »
Raghav Kansal · Javier Duarte · Hao Su · Breno Orzari · Thiago Tomei · Maurizio Pierini · Mary Touranakou · jean-roch vlimant · Dimitrios Gunopulos -
2021 Poster: SketchGen: Generating Constrained CAD Sketches »
Wamiq Para · Shariq Bhat · Paul Guerrero · Tom Kelly · Niloy Mitra · Leonidas Guibas · Peter Wonka -
2020 : QA: Leonidas J. Guibas »
Leonidas Guibas -
2020 : Invited Talk: Leonidas J. Guibas »
Leonidas Guibas -
2020 Poster: Generative 3D Part Assembly via Dynamic Graph Learning »
jialei huang · Guanqi Zhan · Qingnan Fan · Kaichun Mo · Lin Shao · Baoquan Chen · Leonidas Guibas · Hao Dong -
2020 Poster: CaSPR: Learning Canonical Spatiotemporal Point Cloud Representations »
Davis Rempe · Tolga Birdal · Yongheng Zhao · Zan Gojcic · Srinath Sridhar · Leonidas Guibas -
2020 Poster: ShapeFlow: Learnable Deformation Flows Among 3D Shapes »
Chiyu Jiang · Jingwei Huang · Andrea Tagliasacchi · Leonidas Guibas -
2020 Spotlight: ShapeFlow: Learnable Deformation Flows Among 3D Shapes »
Chiyu Jiang · Jingwei Huang · Andrea Tagliasacchi · Leonidas Guibas -
2020 Spotlight: CaSPR: Learning Canonical Spatiotemporal Point Cloud Representations »
Davis Rempe · Tolga Birdal · Yongheng Zhao · Zan Gojcic · Srinath Sridhar · Leonidas Guibas -
2019 Poster: Multiview Aggregation for Learning Category-Specific Shape Reconstruction »
Srinath Sridhar · Davis Rempe · Julien Valentin · Bouaziz Sofien · Leonidas Guibas -
2019 Poster: A Condition Number for Joint Optimization of Cycle-Consistent Networks »
Leonidas Guibas · Qixing Huang · Zhenxiao Liang -
2019 Spotlight: A Condition Number for Joint Optimization of Cycle-Consistent Networks »
Leonidas Guibas · Qixing Huang · Zhenxiao Liang -
2018 Poster: Deep Functional Dictionaries: Learning Consistent Semantic Structures on 3D Models from Functions »
Minhyuk Sung · Hao Su · Ronald Yu · Leonidas Guibas -
2018 Poster: PointCNN: Convolution On X-Transformed Points »
Yangyan Li · Rui Bu · Mingchao Sun · Wei Wu · Xinhan Di · Baoquan Chen -
2017 Poster: PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space »
Charles Ruizhongtai Qi · Li Yi · Hao Su · Leonidas Guibas -
2015 Poster: Deep Knowledge Tracing »
Chris Piech · Jonathan Bassen · Jonathan Huang · Surya Ganguli · Mehran Sahami · Leonidas Guibas · Jascha Sohl-Dickstein -
2013 Poster: Wavelets on Graphs via Deep Learning »
Raif Rustamov · Leonidas Guibas -
2013 Demonstration: Codewebs: a Pedagogical Search Engine for Code Submissions to a MOOC »
Jonathan Huang · Chris Piech · Andy Nguyen · Leonidas Guibas -
2010 Poster: Object Bank: A High-Level Image Representation for Scene Classification & Semantic Feature Sparsification »
Li-Jia Li · Hao Su · Eric Xing · Li Fei-Fei -
2007 Oral: Efficient Inference forDistributions on Permutations »
Jonathan Huang · Carlos Guestrin · Leonidas Guibas -
2007 Poster: Efficient Inference forDistributions on Permutations »
Jonathan Huang · Carlos Guestrin · Leonidas Guibas