Timezone: »
Interactive machine learning (IML) explores how intelligent agents solve a task together, often focusing on adaptable collaboration over the course of sequential decision making tasks. Past research in the field of IML has investigated how autonomous agents can learn to solve problems more effectively by making use of interactions with humans. Designing and engineering fully autonomous agents is a difficult and sometimes intractable challenge. As such, there is a compelling need for IML algorithms that enable artificial and human agents to collaborate and solve independent or shared goals. The range of real-world examples of IML spans from web applications such as search engines, recommendation systems and social media personalization, to dialog systems and embodied systems such as industrial robots and household robotic assistants, and to medical robotics (e.g. bionic limbs, assistive devices, and exoskeletons). As intelligent systems become more common in industry and in everyday life, the need for these systems to interact with and learn from the people around them will also increase.
This workshop seeks to brings together experts in the fields of IML, reinforcement learning (RL), human-computer interaction (HCI), robotics, cognitive psychology and the social sciences to share recent advances and explore the future of IML. Some questions of particular interest for this workshop include: How can recent advancements in machine learning allow interactive learning to be deployed in current real world applications? How do we address the challenging problem of seamless communication between autonomous agents and humans? How can we improve the ability to collaborate safely and successfully across a diverse set of users?
We hope that this workshop will produce several outcomes:
- A review of current algorithms and techniques for IML, and a focused perspective on what is lacking;
- A formalization of the main challenges for deploying modern interactive learning algorithms in the real world; and
- A forum for interdisciplinary researchers to discuss open problems and challenges, present new ideas on IML, and plan for future collaborations.
Topics relevant to this workshop include:
Human-robot interaction
Collaborative and/or shared control
Semi-supervised learning with human intervention
Learning from demonstration, interaction and/or observation
Reinforcement learning with human-in-the-loop
Active learning, Preference learning
Transfer learning (human-to-machine, machine-to-machine)
Natural language processing for dialog systems
Computer vision for human interaction with autonomous systems
Transparency and feedback in machine learning
Computational models of human teaching
Intelligent personal assistants and dialog systems
Adaptive user interfaces
Brain-computer interfaces (e.g. human-semi-autonomous system interfaces)
Intelligent medical robots (e.g. smart wheelchairs, prosthetics, exoskeletons)
Thu 11:20 p.m. - 12:10 a.m.
|
Opening Remarks, Invited Talk: Michael C. Mozer
(
Invited Talk
)
|
Michael Mozer 🔗 |
Fri 12:10 a.m. - 12:30 a.m.
|
A Human-in-the-loop Approach for Troubleshooting Machine Learning Systems, Besmira Nushi, Ece Kamar, Donald Kossmann and Eric Horvitz
(
Paper Presentation
)
We study the problem of troubleshooting machine learning systems that rely on analytical pipelines of distinct components. Understanding and fixing errors that arise in such integrative systems is difficult as failures can occur at multiple points in the execution workflow. Moreover, errors can propagate, become amplified or be suppressed, making blame assignment difficult. We propose a human-in-the-loop methodology which leverages human intellect for troubleshooting system failures. The approach simulates potential component fixes through human computation tasks and measures the expected improvements in the holistic behavior of the system. The method provides guidance to designers about how they can best improve the system. We demonstrate the effectiveness of the approach on an automated image captioning system that has been pressed into real-world use. |
🔗 |
Fri 12:30 a.m. - 12:50 a.m.
|
Efficient Exploration in Monte Carlo Tree Search using Human Action Abstractions, Kaushik Subramanian, Jonathan Scholz, Charles Isbell and Andrea Thomaz
(
Paper Presentation
)
Monte Carlo Tree Search (MCTS) is a family of methods for planning in large domains. It focuses on finding a good action for a particular state, making its complexity independent of the size of the state space. However such methods are exponential with respect to the branching factor. Effective application of MCTS requires good heuristics to arbitrate action selection during learning. In this paper we present a policy-guided approach that utilizes action abstractions, derived from human input, with MCTS to facilitate efficient exploration. We draw from existing work in hierarchical reinforcement learning, interactive machine learning and show how multi-step actions, represented as stochastic policies, can serve as good action selection heuristics. We demonstrate the efficacy of our approach in the PacMan domain and highlight its advantages over traditional MCTS. |
🔗 |
Fri 12:50 a.m. - 1:30 a.m.
|
Invited Talk: Mattew E. Taylor
(
Invited Talk
)
|
Matthew Taylor 🔗 |
Fri 1:30 a.m. - 2:00 a.m.
|
Coffee Break 1
|
🔗 |
Fri 2:00 a.m. - 2:40 a.m.
|
Invited Talk: Olivier Pietquin
(
Invited Talk
)
|
Olivier Pietquin 🔗 |
Fri 2:40 a.m. - 3:10 a.m.
|
Poster Spotlight Talks 1
(
Poster Spotlight 1
)
SPARC: an efficient way to combine reinforcement learning and supervised autonomy, Emmanuel Senft, Paul Baxter, Séverin Lemaignan and Tony Belpaeme Near-optimal Bayesian Active Learning with Correlated and Noisy Tests, Yuxin Chen, Hamed Hassani and Andreas Krause A Multimodal Human-Robot Interaction Dataset, Pablo Azagra, Yoan Mollard, Florian Golemo, Ana Cristina Murillo, Manuel Lopes and Javier Civera Cross-Entropy as a Criterion for Robust Interactive Learning of Latent Properties, Johannes Kulick, Robert Lieck and Marc Toussaint Ensemble Co-Training of Image and EEG-based RSVP Classifiers for Improved Image Triage, Steven Gutstein, Vernon Lawhern and Brent Lance Active Reinforcement Learning: Observing Rewards at a Cost, David Krueger, Owain Evans, Jan Leike and John Salvatier ReVACNN: Steering Convolutional Neural Network via Real-Time Visual Analytics, Sunghyo Chung, Cheonbok Park, Sangho Suh, Kyeongpil Kang, Jaegul Choo and Bum Chul Kwon Analysis of a Design Pattern for Teaching with Features and Labels, Christopher Meek, Patrice Simard and Jerry Zhu Agent-Agnostic Human-in-the-Loop Reinforcement Learning, David Abel, Owain Evans, John Salvatier and Andreas Stuhlmüller |
🔗 |
Fri 3:10 a.m. - 3:50 a.m.
|
Invited Talk: Todd Gureckis
(
Invited Talk
)
|
Todd Gureckis 🔗 |
Fri 3:50 a.m. - 5:00 a.m.
|
Lunch Break
|
🔗 |
Fri 5:00 a.m. - 5:30 a.m.
|
Poster Spotlight Talks 2
(
Poster Spotlight 2
)
Probabilistic Expert Knowledge Elicitation of Feature Relevances in Sparse Linear Regression, Pedram Daee, Tomi Peltola, Marta Soare and Samuel Kaski Socratic Learning, Paroma Varma, Rose Yu, Dan Iter, Chris De Sa and Christopher Re Probabilistic Active Learning for Active Class Selection, Daniel Kottke, Georg Krempl, Marianne Stecklina, Cornelius Styp von Rekowski, Tim Sabsch, Tuan Pham Minh, Matthias Deliano, Myra Spiliopoulou and Bernhard Sick Regression Analysis in Small-n-Large-p Using Interactive Prior Elicitation of Pairwise Similarities, Homayun Afrabandpey, Tomi Peltola and Samuel Kaski Scalable batch mode Optimal Experimental Design for Deep Networks, Mélanie Ducoffe, Geoffrey Portelli and Frederic Precioso Interactive Preference Learning of Utility Functions for Multi-Objective Optimization, Ian Dewancker, Michael Mccourt and Samuel Ainsworth Improving Online Learning of Visual Categories by Deep Features, Lydia Fischer, Stephan Hasler, Sebastian Schrom and Heiko Wersing Interactive user intent modeling for eliciting priors of a normal linear model, Iiris Sundin, Luana Micallef, Pekka Marttinen, Muhammad Ammad-Ud-Din, Tomi Peltola, Marta Soare, Giulio Jacucci and Samuel Kaski Training an Interactive Humanoid Robot Using Multimodal Deep Reinforcement Learning, Heriberto Cuayahuitl, Guillaume Couly and Clement Olalainty |
🔗 |
Fri 5:30 a.m. - 6:10 a.m.
|
Invited Talk: Aude Billard
(
Invited Talk
)
|
Aude G Billard 🔗 |
Fri 6:10 a.m. - 6:30 a.m.
|
Coffee Break 2
|
🔗 |
Fri 6:30 a.m. - 7:30 a.m.
|
Poster Session
|
🔗 |
Fri 7:30 a.m. - 7:50 a.m.
|
Enabling Robots to Communicate Reward Functions, Sandy Huang, David Held, Pieter Abbeel and Anca Dragan
(
Paper Presentation
)
Understanding a robot's reward function is key to anticipating how the robot will act in a new situation. Our goal is to generate a set of robot behaviors that best illustrates a robot's reward function. We build on prior work modeling inference of the reward function from example behavior via Inverse Reinforcement Learning (IRL). Prior work using IRL has focused on people teaching machines and assumes exact inference. Our insight is that when teaching people, they will not perform exact inference. We show that while leveraging models of noisy inference can be beneficial, it is also important to achieve coverage in the space of possible strategies the robot can use. We introduce a hybrid algorithm that targets informative examples via both a noisy inference model and coverage. |
🔗 |
Fri 7:50 a.m. - 8:10 a.m.
|
Hierarchical Multi-Agent Reinforcement Learning through Communicative Actions for Human-Robot Collaboration, Elena Corina Grigore and Brian Scassellati
(
Paper Presentation
)
As we expect robots to start moving from working in isolated industry settings into human populated environments, our need to develop suitable learning algorithms for the latter increases. Human-robot collaboration is a particular area that has tremendous gains from endowing a robot with such learning capabilities, focusing on robots that can work side-by-side with a human and provide supportive behaviors throughout a task executed by the human worker. In this paper, we propose a framework based on hierarchical multi-agent reinforcement learning that considers the human as an ``expert'' agent in the system—an agent whose actions we cannot control but whose actions, jointly with the robot's actions, impact the state of the task. Our framework aims to provide the learner (the robot) with a way of learning how to provide supportive behaviors to the expert agent (the person) during a complex task. The robot employs communicative actions to interactively learn from the expert agent at key points during the task. We use a hierarchical approach in order to integrate the communicative actions in the multi-agent reinforcement learning framework and allow for simultaneously learning the quality of performing different supportive behaviors for particular combinations of task states and expert agent actions. In this paper, we present our proposed framework, detail the motion capture system data collection we performed in order to learn about the task states and characterize the expert agent's actions, and discuss how we can apply the framework to our human-robot collaboration scenario. |
🔗 |
Fri 8:10 a.m. - 8:50 a.m.
|
Invited Talk: Emma Brunskill
(
Invited Talk
)
|
Emma Brunskill 🔗 |
Fri 8:50 a.m. - 9:40 a.m.
|
Panel Discussion, Closing Remarks
(
Discussion Panel
)
|
🔗 |
Author Information
Kory Mathewson @korymath (University of Alberta)
Kaushik Subramanian (Cogitai Inc.)
Mark Ho (UC Berkeley)
Robert Loftin (North Carolina State University)
Joseph L Austerweil (University of Wisconsin, Madison)
As a computational cognitive psychologist, my research program explores questions at the intersection of perception and higher-level cognition. I use recent advances in statistics and computer science to formulate ideal learner models to see how they solve these problems and then test the model predictions using traditional behavioral experimentation. Ideal learner models help us understand the knowledge people use to solve problems because such knowledge must be made explicit for the ideal learner model to successfully produce human behavior. This method yields novel machine learning methods and leads to the discovery of new psychological principles.
Anna Harutyunyan (DeepMind)
Doina Precup (McGill University / DeepMind Montreal)
Layla El Asri (Microsoft)
Matthew Gombolay (MIT)
Jerry Zhu (University of Wisconsin-Madison)
Sonia Chernova (Georgia Institute of Technology)
Charles Isbell (Georgia Tech)

Dr. Charles Isbell received his bachelor's in Information and Computer Science from Georgia Tech, and his MS and PhD at MIT's AI Lab. Upon graduation, he worked at AT&T Labs/Research until 2002, when he returned to Georgia Tech to join the faculty as an Assistant Professor. He has served many roles since returning and is now The John P. Imlay Jr. Dean of the College of Computing. Charles’s research interests are varied but the unifying theme of his work has been using machine learning to build autonomous agents who engage directly with humans. His work has been featured in the popular press, congressional testimony, and in several technical collections. In parallel, Charles has also pursued reform in computing education. He was a chief architect of Threads, Georgia Tech’s structuring principle for computing curricula. Charles was also an architect for Georgia Tech’s First-of-its’s-kind MOOC-supported MS in Computer Science. Both efforts have received international attention, and been presented in the academic and popular press. In all his roles, he has continued to focus on issues of broadening participation in computing, and is the founding Executive Director for the Constellations Center for Equity in Computing. He is an AAAI Fellow and a Fellow of the ACM. Appropriately, his citation for ACM Fellow reads “for contributions to interactive machine learning; and for contributions to increasing access and diversity in computing”.
Patrick M Pilarski (University of Alberta)
Weng-Keen Wong (Oregon State University)
Manuela Veloso (Carnegie Mellon University)
Julie A Shah (MIT)
Matthew Taylor (Washington State University)
Brenna Argall (Northwestern University)
Michael Littman (Brown University)
More from the Same Authors
-
2021 : Unsupervised Attribute Alignment for Characterizing Distribution Shift »
Matthew Olson · Rushil Anirudh · Jayaraman Thiagarajan · Timo Bremer · Weng-Keen Wong · Shusen Liu -
2021 : Bayesian Exploration for Lifelong Reinforcement Learning »
Haotian Fu · Shangqun Yu · Michael Littman · George Konidaris -
2021 : Game Redesign in No-regret Game Playing »
Yuzhe Ma · Young Wu · Jerry Zhu -
2021 : Reward Poisoning in Reinforcement Learning: Attacks Against Unknown Learners in Unknown Environments »
Amin Rakhsha · Xuezhou Zhang · Jerry Zhu · Adish Singla -
2021 : Single-Shot Pruning for Offline Reinforcement Learning »
Samin Yeasar Arnob · · Sergey Plis · Doina Precup -
2021 : Importance of Empirical Sample Complexity Analysis for Offline Reinforcement Learning »
Samin Yeasar Arnob · Riashat Islam · Doina Precup -
2021 : Game Redesign in No-regret Game Playing »
Yuzhe Ma · Young Wu · Jerry Zhu -
2021 : Reward Poisoning in Reinforcement Learning: Attacks Against Unknown Learners in Unknown Environments »
Amin Rakhsha · Xuezhou Zhang · Jerry Zhu · Adish Singla -
2022 : Trading off Utility, Informativeness, and Complexity in Emergent Communication »
Mycal Tucker · Julie A Shah · Roger Levy · Noga Zaslavsky -
2022 : The Paradox of Choice: On the Role of Attention in Hierarchical Reinforcement Learning »
Andrei Nica · Khimya Khetarpal · Doina Precup -
2022 : Multi-Environment Pretraining Enables Transfer to Action Limited Datasets »
David Venuto · Mengjiao (Sherry) Yang · Pieter Abbeel · Doina Precup · Igor Mordatch · Ofir Nachum -
2022 : Bayesian Q-learning With Imperfect Expert Demonstrations »
Fengdi Che · Xiru Zhu · Doina Precup · David Meger · Gregory Dudek -
2022 : Complete the Missing Half: Augmenting Aggregation Filtering with Diversification for Graph Convolutional Networks »
Sitao Luan · Mingde Zhao · Chenqing Hua · Xiao-Wen Chang · Doina Precup -
2022 : Bayesian Q-learning With Imperfect Expert Demonstrations »
Fengdi Che · Xiru Zhu · Doina Precup · David Meger · Gregory Dudek -
2022 : Continually Learned Pavlovian Signalling Without Forgetting for Human-in-the-Loop Robotic Control »
Adam Parker · Michael Dawson · Patrick M Pilarski -
2022 : Fast Adaptation via Human Diagnosis of Task Distribution Shift »
Andi Peng · Mark Ho · Aviv Netanyahu · Julie A Shah · Pulkit Agrawal -
2022 : Temporal Logic Imitation: Learning Plan-Satisficing Motion Policies from Demonstrations »
Felix Yanwei Wang · Nadia Figueroa · Shen Li · Ankit Shah · Julie A Shah -
2022 : Aligning Robot Representations with Humans »
Andreea Bobu · Andi Peng · Pulkit Agrawal · Julie A Shah · Anca Dragan -
2022 : Generalization and Translatability in Emergent Communication via Informational Constraints »
Mycal Tucker · Roger Levy · Julie A Shah · Noga Zaslavsky -
2022 Workshop: Graph Learning for Industrial Applications: Finance, Crime Detection, Medicine and Social Media »
Manuela Veloso · John Dickerson · Senthil Kumar · Eren K. · Jian Tang · Jie Chen · Peter Henstock · Susan Tibbs · Ani Calinescu · Naftali Cohen · C. Bayan Bruss · Armineh Nourbakhsh -
2022 Spotlight: Lightning Talks 3B-3 »
Sitao Luan · Zhiyuan You · Ruofan Liu · Linhao Qu · Yuwei Fu · Jiaxi Wang · Chunyu Wei · Jian Liang · xiaoyuan luo · Di Wu · Yun Lin · Lei Cui · Ji Wu · Chenqing Hua · Yujun Shen · Qincheng Lu · XIANGLIN YANG · Benoit Boulet · Manning Wang · Di Liu · Lei Huang · Fei Wang · Kai Yang · Jiaqi Zhu · Jin Song Dong · Zhijian Song · Xin Lu · Mingde Zhao · Shuyuan Zhang · Yu Zheng · Xiao-Wen Chang · Xinyi Le · Doina Precup -
2022 Spotlight: Revisiting Heterophily For Graph Neural Networks »
Sitao Luan · Chenqing Hua · Qincheng Lu · Jiaqi Zhu · Mingde Zhao · Shuyuan Zhang · Xiao-Wen Chang · Doina Precup -
2022 Spotlight: Evaluation beyond Task Performance: Analyzing Concepts in AlphaZero in Hex »
Charles Lovering · Jessica Forde · George Konidaris · Ellie Pavlick · Michael Littman -
2022 : Simulating Human Gaze with Neural Visual Attention »
Leo Schwinn · Doina Precup · Bjoern Eskofier · Dario Zanca -
2022 : Generalization and Translatability in Emergent Communication via Informational Constraints »
Mycal Tucker · Roger Levy · Julie A Shah · Noga Zaslavsky -
2022 : Simulating Human Gaze with Neural Visual Attention »
Leo Schwinn · Doina Precup · Bjoern Eskofier · Dario Zanca -
2022 : Panel Discussion »
Cynthia Rudin · Dan Bohus · Brenna Argall · Alison Gopnik · Igor Mordatch · Samuel Kaski -
2022 : Human and Machine Learning for Assistive and Rehabilitation Robots »
Brenna Argall -
2022 : Fast Learning of Multidimensional Hawkes Processes via Frank-Wolfe »
Renbo Zhao · Niccolo Dalmasso · Mohsen Ghassemi · Vamsi Potluru · Tucker Balch · Manuela Veloso -
2022 Workshop: 3rd Offline Reinforcement Learning Workshop: Offline RL as a "Launchpad" »
Aviral Kumar · Rishabh Agarwal · Aravind Rajeswaran · Wenxuan Zhou · George Tucker · Doina Precup · Aviral Kumar -
2022 Poster: Revisiting Heterophily For Graph Neural Networks »
Sitao Luan · Chenqing Hua · Qincheng Lu · Jiaqi Zhu · Mingde Zhao · Shuyuan Zhang · Xiao-Wen Chang · Doina Precup -
2022 Poster: Faster Deep Reinforcement Learning with Slower Online Network »
Kavosh Asadi · Rasool Fakoor · Omer Gottesman · Taesup Kim · Michael Littman · Alexander Smola -
2022 Poster: Provable Defense against Backdoor Policies in Reinforcement Learning »
Shubham Bharti · Xuezhou Zhang · Adish Singla · Jerry Zhu -
2022 Poster: Evaluation beyond Task Performance: Analyzing Concepts in AlphaZero in Hex »
Charles Lovering · Jessica Forde · George Konidaris · Ellie Pavlick · Michael Littman -
2022 Poster: Model-based Lifelong Reinforcement Learning with Bayesian Exploration »
Haotian Fu · Shangqun Yu · Michael Littman · George Konidaris -
2022 Poster: ASPiRe: Adaptive Skill Priors for Reinforcement Learning »
Mengda Xu · Manuela Veloso · Shuran Song -
2022 Poster: Continuous MDP Homomorphisms and Homomorphic Policy Gradient »
Sahand Rezaei-Shoshtari · Rosie Zhao · Prakash Panangaden · David Meger · Doina Precup -
2021 : [O5] Do Feature Attribution Methods Correctly Attribute Features? »
Yilun Zhou · Serena Booth · Marco Tulio Ribeiro · Julie A Shah -
2021 Workshop: Offline Reinforcement Learning »
Rishabh Agarwal · Aviral Kumar · George Tucker · Justin Fu · Nan Jiang · Doina Precup · Aviral Kumar -
2021 Poster: On the Expressivity of Markov Reward »
David Abel · Will Dabney · Anna Harutyunyan · Mark Ho · Michael Littman · Doina Precup · Satinder Singh -
2021 Poster: Emergent Discrete Communication in Semantic Spaces »
Mycal Tucker · Huao Li · Siddharth Agrawal · Dana Hughes · Katia Sycara · Michael Lewis · Julie A Shah -
2021 Oral: On the Expressivity of Markov Reward »
David Abel · Will Dabney · Anna Harutyunyan · Mark Ho · Michael Littman · Doina Precup · Satinder Singh -
2020 : Closing remarks »
Raymond Chua · Feryal Behbahani · Julie J Lee · Rui Ponte Costa · Doina Precup · Blake Richards · Ida Momennejad -
2020 : Invited Talk #7 QnA - Yael Niv »
Yael Niv · Doina Precup · Raymond Chua · Feryal Behbahani -
2020 : Speaker Introduction: Yael Niv »
Doina Precup · Raymond Chua · Feryal Behbahani -
2020 Workshop: Offline Reinforcement Learning »
Aviral Kumar · Rishabh Agarwal · George Tucker · Lihong Li · Doina Precup · Aviral Kumar -
2020 : Panel Discussions »
Grace Lindsay · George Konidaris · Shakir Mohamed · Kimberly Stachenfeld · Peter Dayan · Yael Niv · Doina Precup · Catherine Hartley · Ishita Dasgupta -
2020 Workshop: Wordplay: When Language Meets Games »
Prithviraj Ammanabrolu · Matthew Hausknecht · Xingdi Yuan · Marc-Alexandre Côté · Adam Trischler · Kory Mathewson @korymath · John Urbanek · Jason Weston · Mark Riedl -
2020 Workshop: Biological and Artificial Reinforcement Learning »
Raymond Chua · Feryal Behbahani · Julie J Lee · Sara Zannone · Rui Ponte Costa · Blake Richards · Ida Momennejad · Doina Precup -
2020 : Organizers Opening Remarks »
Raymond Chua · Feryal Behbahani · Julie J Lee · Ida Momennejad · Rui Ponte Costa · Blake Richards · Doina Precup -
2020 : Keynote: Doina Precup »
Doina Precup -
2020 Poster: Reward Propagation Using Graph Convolutional Networks »
Martin Klissarov · Doina Precup -
2020 Spotlight: Reward Propagation Using Graph Convolutional Networks »
Martin Klissarov · Doina Precup -
2020 Poster: An Equivalence between Loss Functions and Non-Uniform Sampling in Experience Replay »
Scott Fujimoto · David Meger · Doina Precup -
2020 Poster: Forethought and Hindsight in Credit Assignment »
Veronica Chelu · Doina Precup · Hado van Hasselt -
2020 Invited Talk: You Can’t Escape Hyperparameters and Latent Variables: Machine Learning as a Software Engineering Enterprise »
Charles Isbell -
2019 : Panel Session: A new hope for neuroscience »
Yoshua Bengio · Blake Richards · Timothy Lillicrap · Ila Fiete · David Sussillo · Doina Precup · Konrad Kording · Surya Ganguli -
2019 : Poster Presentations »
Rahul Mehta · Andrew Lampinen · Binghong Chen · Sergio Pascual-Diaz · Jordi Grau-Moya · Aldo Faisal · Jonathan Tompson · Yiren Lu · Khimya Khetarpal · Martin Klissarov · Pierre-Luc Bacon · Doina Precup · Thanard Kurutach · Aviv Tamar · Pieter Abbeel · Jinke He · Maximilian Igl · Shimon Whiteson · Wendelin Boehmer · Raphaël Marinier · Olivier Pietquin · Karol Hausman · Sergey Levine · Chelsea Finn · Tianhe Yu · Lisa Lee · Benjamin Eysenbach · Emilio Parisotto · Eric Xing · Ruslan Salakhutdinov · Hongyu Ren · Anima Anandkumar · Deepak Pathak · Christopher Lu · Trevor Darrell · Alexei Efros · Phillip Isola · Feng Liu · Bo Han · Gang Niu · Masashi Sugiyama · Saurabh Kumar · Janith Petangoda · Johan Ferret · James McClelland · Kara Liu · Animesh Garg · Robert Lange -
2019 : Poster Spotlight 2 »
Aaron Sidford · Mengdi Wang · Lin Yang · Yinyu Ye · Zuyue Fu · Zhuoran Yang · Yongxin Chen · Zhaoran Wang · Ofir Nachum · Bo Dai · Ilya Kostrikov · Dale Schuurmans · Ziyang Tang · Yihao Feng · Lihong Li · Denny Zhou · Qiang Liu · Rodrigo Toro Icarte · Ethan Waldie · Toryn Klassen · Rick Valenzano · Margarita Castro · Simon Du · Sham Kakade · Ruosong Wang · Minshuo Chen · Tianyi Liu · Xingguo Li · Zhaoran Wang · Tuo Zhao · Philip Amortila · Doina Precup · Prakash Panangaden · Marc Bellemare -
2019 : Panel Discussion »
Richard Sutton · Doina Precup -
2019 : Poster and Coffee Break 1 »
Aaron Sidford · Aditya Mahajan · Alejandro Ribeiro · Alex Lewandowski · Ali H Sayed · Ambuj Tewari · Angelika Steger · Anima Anandkumar · Asier Mujika · Hilbert J Kappen · Bolei Zhou · Byron Boots · Chelsea Finn · Chen-Yu Wei · Chi Jin · Ching-An Cheng · Christina Yu · Clement Gehring · Craig Boutilier · Dahua Lin · Daniel McNamee · Daniel Russo · David Brandfonbrener · Denny Zhou · Devesh Jha · Diego Romeres · Doina Precup · Dominik Thalmeier · Eduard Gorbunov · Elad Hazan · Elena Smirnova · Elvis Dohmatob · Emma Brunskill · Enrique Munoz de Cote · Ethan Waldie · Florian Meier · Florian Schaefer · Ge Liu · Gergely Neu · Haim Kaplan · Hao Sun · Hengshuai Yao · Jalaj Bhandari · James A Preiss · Jayakumar Subramanian · Jiajin Li · Jieping Ye · Jimmy Smith · Joan Bas Serrano · Joan Bruna · John Langford · Jonathan Lee · Jose A. Arjona-Medina · Kaiqing Zhang · Karan Singh · Yuping Luo · Zafarali Ahmed · Zaiwei Chen · Zhaoran Wang · Zhizhong Li · Zhuoran Yang · Ziping Xu · Ziyang Tang · Yi Mao · David Brandfonbrener · Shirli Di-Castro · Riashat Islam · Zuyue Fu · Abhishek Naik · Saurabh Kumar · Benjamin Petit · Angeliki Kamoutsi · Simone Totaro · Arvind Raghunathan · Rui Wu · Donghwan Lee · Dongsheng Ding · Alec Koppel · Hao Sun · Christian Tjandraatmadja · Mahdi Karami · Jincheng Mei · Chenjun Xiao · Junfeng Wen · Zichen Zhang · Ross Goroshin · Mohammad Pezeshki · Jiaqi Zhai · Philip Amortila · Shuo Huang · Mariya Vasileva · El houcine Bergou · Adel Ahmadyan · Haoran Sun · Sheng Zhang · Lukas Gruber · Yuanhao Wang · Tetiana Parshakova -
2019 : Invited Talk: Hierarchical Reinforcement Learning: Computational Advances and Neuroscience Connections »
Doina Precup -
2019 : Panel Discussion led by Grace Lindsay »
Grace Lindsay · Blake Richards · Doina Precup · Jacqueline Gottlieb · Jeff Clune · Jane Wang · Richard Sutton · Angela Yu · Ida Momennejad -
2019 : Poster Session »
Nathalie Baracaldo · Seth Neel · Tuyen Le · Dan Philps · Suheng Tao · Sotirios Chatzis · Toyo Suzumura · Wei Wang · WENHANG BAO · Solon Barocas · Manish Raghavan · Samuel Maina · Reginald Bryant · Kush Varshney · Skyler D. Speakman · Navdeep Gill · Nicholas Schmidt · Kevin Compher · Naveen Sundar Govindarajulu · Vivek Sharma · Praneeth Vepakomma · Tristan Swedish · Jayashree Kalpathy-Cramer · Ramesh Raskar · Shihao Zheng · Mykola Pechenizkiy · Marco Schreyer · Li Ling · Chirag Nagpal · Robert Tillman · Manuela Veloso · Hanjie Chen · Xintong Wang · Michael Wellman · Matthew van Adelsberg · Ben Wood · Hans Buehler · Mahmoud Mahfouz · Antonios Alexos · Megan Shearer · Antigoni Polychroniadou · Lucia Larise Stavarache · Dmitry Efimov · Johnston P Hall · Yukun Zhang · Emily Diana · Sumitra Ganesh · Vineeth Ravi · · Swetasudha Panda · Xavier Renard · Matthew Jagielski · Yonadav Shavit · Joshua Williams · Haoran Wei · Shuang (Sophie) Zhai · Xinyi Li · Hongda Shen · Daiki Matsunaga · Jaesik Choi · Alexis Laignelet · Batuhan Guler · Jacobo Roa Vicens · Ajit Desai · Jonathan Aigrain · Robert Samoilescu -
2019 : Discussion Panel »
Manuela Veloso -
2019 : Opening Remarks »
Raymond Chua · Feryal Behbahani · Sara Zannone · Rui Ponte Costa · Claudia Clopath · Doina Precup · Blake Richards -
2019 Workshop: Biological and Artificial Reinforcement Learning »
Raymond Chua · Sara Zannone · Feryal Behbahani · Rui Ponte Costa · Claudia Clopath · Blake Richards · Doina Precup -
2019 Workshop: Robust AI in Financial Services: Data, Fairness, Explainability, Trustworthiness, and Privacy »
Alina Oprea · Avigdor Gal · Eren K. · Isabelle Moulinier · Jiahao Chen · Manuela Veloso · Senthil Kumar · Tanveer Faruquie -
2019 : Opening Remarks »
Jiahao Chen · Manuela Veloso · Senthil Kumar · Isabelle Moulinier · Avigdor Gal · Alina Oprea · Tanveer Faruquie · Eren K. -
2019 Poster: Policy Poisoning in Batch Reinforcement Learning and Control »
Yuzhe Ma · Xuezhou Zhang · Wen Sun · Jerry Zhu -
2019 Poster: Preference-Based Batch and Sequential Teaching: Towards a Unified View of Models »
Farnam Mansouri · Yuxin Chen · Ara Vartanian · Jerry Zhu · Adish Singla -
2019 Poster: A Unified Framework for Data Poisoning Attack to Graph-based Semi-supervised Learning »
Xuanqing Liu · Si Si · Jerry Zhu · Yang Li · Cho-Jui Hsieh -
2019 Poster: Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks »
Sitao Luan · Mingde Zhao · Xiao-Wen Chang · Doina Precup -
2018 : Sonia Chernova »
Sonia Chernova -
2018 : Panel: Explainability, Fairness and Human Aspects in Financial Services »
Madeleine Udell · Jiahao Chen · Nitzan Mekel-Bobrov · Manuela Veloso · Jon Kleinberg · Andrea Freeman · Samik Chandarana · Jacob Sisk · Michael McBurnett -
2018 : Opening Remarks »
Manuela Veloso · Isabelle Moulinier -
2018 Workshop: Challenges and Opportunities for AI in Financial Services: the Impact of Fairness, Explainability, Accuracy, and Privacy »
Manuela Veloso · Nathan Kallus · Sameena Shah · Senthil Kumar · Isabelle Moulinier · Jiahao Chen · John Paisley -
2018 Poster: Temporal Regularization for Markov Decision Process »
Pierre Thodoroff · Audrey Durand · Joelle Pineau · Doina Precup -
2018 Poster: Learning Task Specifications from Demonstrations »
Marcell Vazquez-Chanlatte · Susmit Jha · Ashish Tiwari · Mark Ho · Sanjit Seshia -
2018 Poster: Learning Safe Policies with Expert Guidance »
Jessie Huang · Fa Wu · Doina Precup · Yang Cai -
2018 Poster: Adversarial Attacks on Stochastic Bandits »
Kwang-Sung Jun · Lihong Li · Yuzhe Ma · Jerry Zhu -
2018 Poster: Bayesian Inference of Temporal Task Specifications from Demonstrations »
Ankit Shah · Pritish Kamath · Julie A Shah · Shen Li -
2017 : Poster Session »
David Abel · Nicholas Denis · Maria Eckstein · Ronan Fruit · Karan Goel · Joshua Gruenstein · Anna Harutyunyan · Martin Klissarov · Xiangyu Kong · Aviral Kumar · Saurabh Kumar · Miao Liu · Daniel McNamee · Shayegan Omidshafiei · Silviu Pitis · Paulo Rauber · Melrose Roderick · Tianmin Shu · Yizhou Wang · Shangtong Zhang -
2017 : Panel Discussion »
Matt Botvinick · Emma Brunskill · Marcos Campos · Jan Peters · Doina Precup · David Silver · Josh Tenenbaum · Roy Fox -
2017 : Progress on Deep Reinforcement Learning with Temporal Abstraction (Doina Precup) »
Doina Precup -
2017 : Doina Precup »
Doina Precup -
2017 : Spotlights & Poster Session »
David Abel · Nicholas Denis · Maria Eckstein · Ronan Fruit · Karan Goel · Joshua Gruenstein · Anna Harutyunyan · Martin Klissarov · Xiangyu Kong · Aviral Kumar · Saurabh Kumar · Miao Liu · Daniel McNamee · Shayegan Omidshafiei · Silviu Pitis · Paulo Rauber · Melrose Roderick · Tianmin Shu · Yizhou Wang · Shangtong Zhang -
2017 : Best Paper Award and Talk — Learning with options that terminate off-policy (Anna Harutyunyan) »
Anna Harutyunyan -
2017 Workshop: Teaching Machines, Robots, and Humans »
Maya Cakmak · Anna Rafferty · Adish Singla · Jerry Zhu · Sandra Zilles -
2017 Workshop: Hierarchical Reinforcement Learning »
Andrew G Barto · Doina Precup · Shie Mannor · Tom Schaul · Roy Fox · Carlos Florensa -
2017 Poster: State Aware Imitation Learning »
Yannick Schroecker · Charles Isbell -
2016 : Optimal Teaching for Online Perceptrons »
Xuezhou Zhang · Jerry Zhu -
2016 : Invited Talk: Mattew E. Taylor »
Matthew Taylor -
2016 Oral: Showing versus doing: Teaching by demonstration »
Mark Ho · Michael Littman · James MacGlashan · Fiery Cushman · Joseph L Austerweil -
2016 Poster: Showing versus doing: Teaching by demonstration »
Mark Ho · Michael Littman · James MacGlashan · Fiery Cushman · Joe Austerweil · Joseph L Austerweil -
2016 Poster: Active Learning with Oracle Epiphany »
Tzu-Kuo Huang · Lihong Li · Ara Vartanian · Saleema Amershi · Jerry Zhu -
2016 Poster: Safe and Efficient Off-Policy Reinforcement Learning »
Remi Munos · Tom Stepleton · Anna Harutyunyan · Marc Bellemare -
2015 Poster: Mind the Gap: A Generative Approach to Interpretable Feature Selection and Extraction »
Been Kim · Julie A Shah · Finale Doshi-Velez -
2015 Poster: Human Memory Search as Initial-Visit Emitting Random Walk »
Kwang-Sung Jun · Jerry Zhu · Timothy T Rogers · Zhuoran Yang · Ming Yuan -
2015 Poster: Data Generation as Sequential Decision Making »
Philip Bachman · Doina Precup -
2015 Spotlight: Data Generation as Sequential Decision Making »
Philip Bachman · Doina Precup -
2015 Poster: Basis refinement strategies for linear value function approximation in MDPs »
Gheorghe Comanici · Doina Precup · Prakash Panangaden -
2014 Workshop: From Bad Models to Good Policies (Sequential Decision Making under Uncertainty) »
Odalric-Ambrym Maillard · Timothy A Mann · Shie Mannor · Jeremie Mary · Laurent Orseau · Thomas Dietterich · Ronald Ortner · Peter Grünwald · Joelle Pineau · Raphael Fonteneau · Georgios Theocharous · Esteban D Arcaute · Christos Dimitrakakis · Nan Jiang · Doina Precup · Pierre-Luc Bacon · Marek Petrik · Aviv Tamar -
2014 Poster: Optimal Teaching for Limited-Capacity Human Learners »
Kaustubh R Patil · Jerry Zhu · Łukasz Kopeć · Bradley C Love -
2014 Poster: Fairness in Multi-Agent Sequential Decision-Making »
Chongjie Zhang · Julie A Shah -
2014 Spotlight: Optimal Teaching for Limited-Capacity Human Learners »
Kaustubh R Patil · Jerry Zhu · Łukasz Kopeć · Bradley C Love -
2014 Poster: Optimizing Energy Production Using Policy Search and Predictive State Representations »
Yuri Grinberg · Doina Precup · Michel Gendreau -
2014 Poster: Learning with Pseudo-Ensembles »
Philip Bachman · Ouais Alsharif · Doina Precup -
2014 Spotlight: Optimizing Energy Production Using Policy Search and Predictive State Representations »
Yuri Grinberg · Doina Precup · Michel Gendreau -
2014 Poster: The Bayesian Case Model: A Generative Approach for Case-Based Reasoning and Prototype Classification »
Been Kim · Cynthia Rudin · Julie A Shah -
2013 Poster: Point Based Value Iteration with Optimal Belief Compression for Dec-POMDPs »
Liam MacDermed · Charles Isbell -
2013 Poster: Visual Concept Learning: Combining Machine Vision and Bayesian Generalization on Concept Hierarchies »
Yangqing Jia · Joshua T Abbott · Joseph L Austerweil · Tom Griffiths · Trevor Darrell -
2013 Poster: Policy Shaping: Integrating Human Feedback with Reinforcement Learning »
Shane Griffith · Kaushik Subramanian · Jonathan Scholz · Charles Isbell · Andrea L Thomaz -
2013 Poster: Learning from Limited Demonstrations »
Beomjoon Kim · Amir-massoud Farahmand · Joelle Pineau · Doina Precup -
2013 Poster: Bellman Error Based Feature Generation using Random Projections on Sparse Spaces »
Mahdi Milani Fard · Yuri Grinberg · Amir-massoud Farahmand · Joelle Pineau · Doina Precup -
2013 Spotlight: Learning from Limited Demonstrations »
Beomjoon Kim · Amir-massoud Farahmand · Joelle Pineau · Doina Precup -
2013 Poster: Machine Teaching for Bayesian Learners in the Exponential Family »
Jerry Zhu -
2012 Poster: Value Pursuit Iteration »
Amir-massoud Farahmand · Doina Precup -
2012 Poster: Trajectory-Based Short-Sighted Probabilistic Planning »
Felipe Trevizan · Manuela Veloso -
2012 Poster: Human memory search as a random walk in a semantic network »
Joshua T Abbott · Joseph L Austerweil · Tom Griffiths -
2012 Spotlight: Human memory search as a random walk in a semantic network »
Joshua T Abbott · Joseph L Austerweil · Tom Griffiths -
2012 Poster: On-line Reinforcement Learning Using Incremental Kernel-Based Stochastic Factorization »
Andre S Barreto · Doina Precup · Joelle Pineau -
2011 Poster: An ideal observer model for identifying the reference frame of objects »
Joseph L Austerweil · Abram Friesen · Tom Griffiths -
2011 Poster: How Do Humans Teach: On Curriculum Learning and Teaching Dimension »
Faisal Khan · Jerry Zhu · Bilge Mutlu -
2011 Poster: Learning Higher-Order Graph Structure with Features by Structure Penalty »
Shilin Ding · Grace Wahba · Jerry Zhu -
2011 Poster: Reinforcement Learning using Kernel-Based Stochastic Factorization »
Andre S Barreto · Doina Precup · Joelle Pineau -
2010 Oral: Humans Learn Using Manifolds, Reluctantly »
Bryan R Gibson · Jerry Zhu · Timothy T Rogers · Chuck Kalish · Joseph Harrison -
2010 Poster: Humans Learn Using Manifolds, Reluctantly »
Bryan R Gibson · Jerry Zhu · Timothy T Rogers · Chuck Kalish · Joseph Harrison -
2010 Spotlight: Learning invariant features using the Transformed Indian Buffet Process »
Joseph L Austerweil · Tom Griffiths -
2010 Poster: Transduction with Matrix Completion: Three Birds with One Stone »
Andrew B Goldberg · Jerry Zhu · Benjamin Recht · Junming Sui · Rob Nowak -
2010 Poster: Learning invariant features using the Transformed Indian Buffet Process »
Joseph L Austerweil · Tom Griffiths -
2010 Session: Spotlights Session 1 »
Jerry Zhu -
2009 Poster: Human Rademacher Complexity »
Jerry Zhu · Timothy T Rogers · Bryan R Gibson -
2009 Poster: Convergent Temporal-Difference Learning with Arbitrary Smooth Function Approximation »
Hamid R Maei · Csaba Szepesvari · Shalabh Batnaghar · Doina Precup · David Silver · Richard Sutton -
2009 Poster: Solving Stochastic Games »
Liam MacDermed · Charles Isbell -
2009 Spotlight: Convergent Temporal-Difference Learning with Arbitrary Smooth Function Approximation »
Hamid R Maei · Csaba Szepesvari · Shalabh Batnaghar · Doina Precup · David Silver · Richard Sutton -
2008 Workshop: Machine learning meets human learning »
Nathaniel D Daw · Tom Griffiths · Josh Tenenbaum · Jerry Zhu -
2008 Poster: Human Active Learning »
Jerry Zhu · Rui M Castro · Timothy T Rogers · Rob Nowak · Ruichen Qian · Chuck Kalish -
2008 Poster: QUIC-SVD: Fast SVD Using Cosine Trees »
Michael Holmes · Alexander Gray · Charles Isbell -
2008 Poster: Analyzing human feature learning as nonparametric Bayesian inference »
Joseph L Austerweil · Tom Griffiths -
2008 Poster: Unlabeled data: Now it helps, now it doesn't »
Aarti Singh · Rob Nowak · Jerry Zhu -
2008 Oral: Unlabeled data: Now it helps, now it doesn't »
Aarti Singh · Rob Nowak · Jerry Zhu -
2008 Spotlight: Analyzing human feature learning as nonparametric Bayesian inference »
Joseph L Austerweil · Tom Griffiths -
2008 Poster: Bounding Performance Loss in Approximate MDP Homomorphisms »
Doina Precup · Jonathan Taylor Taylor · Prakash Panangaden -
2007 Poster: Multi-Stage Monte Carlo Approximation for Fast Generalized Data Summations »
Michael Holmes · Alexander Gray · Charles Isbell