Timezone: »
Machine intelligence capable of learning complex procedural behavior, inducing (latent) programs, and reasoning with these programs is a key to solving artificial intelligence. The problems of learning procedural behavior and program induction have been studied from different perspectives in many computer science fields such as program synthesis, probabilistic programming, inductive logic programming, reinforcement learning, and recently in deep learning. However, despite the common goal, there seems to be little communication and collaboration between the different fields focused on this problem.
Recently, there have been a lot of success stories in the deep learning community related to learning neural networks capable of using trainable memory abstractions. This has led to the development of neural networks with differentiable data structures such as Neural Turing Machines, Memory Networks, Neural Stacks, and Hierarchical Attentive Memory, among others. Simultaneously, neural program induction models like Neural Program Interpreters and Neural Programmer have created a lot of excitement in the field, promising induction of algorithmic behavior, and enabling inclusion of programming languages in the processes of execution and induction, while staying end-to-end trainable. Trainable program induction models have the potential to make a substantial impact in many problems involving long-term memory, reasoning, and procedural execution, such as question answering, dialog, and robotics.
The aim of the NAMPI workshop is to bring researchers and practitioners from both academia and industry, in the areas of deep learning, program synthesis, probabilistic programming, inductive programming and reinforcement learning, together to exchange ideas on the future of program induction with a special focus on neural network models and abstract machines. Through this workshop we look to identify common challenges, exchange ideas among and lessons learned from the different fields, as well as establish a (set of) standard evaluation benchmark(s) for approaches that learn with abstraction and/or reason with induced programs.
Areas of interest for discussion and submissions include, but are not limited to (in alphabetical order):
- Applications
- Compositionality in Representation Learning
- Differentiable Memory
- Differentiable Data Structures
- Function and (sub-)Program Compositionality
- Inductive Logic Programming
- Knowledge Representation in Neural Abstract Structures
- Large-scale Program Induction
- Meta-Learning and Self-improving
- Neural Abstract Machines
- Program Induction: Datasets, Tasks, and Evaluation
- Program Synthesis
- Probabilistic Programming
- Reinforcement Learning for Program Induction
- Semantic Parsing
Fri 11:50 p.m. - 12:00 a.m.
|
Introduction
|
🔗 |
Sat 12:00 a.m. - 12:30 a.m.
|
Stephen Muggleton - What use is Abstraction in Deep Program Induction?
(
Session
)
|
🔗 |
Sat 12:30 a.m. - 1:00 a.m.
|
Daniel Tarlow - In Search of Strong Generalization: Building Structured Models in the Age of Neural Networks
(
Session
)
|
🔗 |
Sat 1:00 a.m. - 1:30 a.m.
|
Charles Sutton - Learning Program Representation: Symbols to Semantics
(
Session
)
|
🔗 |
Sat 1:30 a.m. - 2:00 a.m.
|
Coffee Break
|
🔗 |
Sat 2:00 a.m. - 2:30 a.m.
|
Doina Precup - From temporal abstraction to programs
(
Session
)
|
🔗 |
Sat 2:30 a.m. - 3:00 a.m.
|
Rob Fergus - Learning to Compose by Delegation
(
Session
)
|
🔗 |
Sat 3:00 a.m. - 3:30 a.m.
|
Percy Liang - How Can We Write Large Programs without Thinking?
(
Session
)
|
🔗 |
Sat 3:30 a.m. - 5:00 a.m.
|
Lunch
|
🔗 |
Sat 5:00 a.m. - 5:30 a.m.
|
Martin Vechev - Program Synthesis and Machine Learning
(
Session
)
|
🔗 |
Sat 5:30 a.m. - 6:00 a.m.
|
Ed Grefenstette - Limitations of RNNs: a computational perspective
(
Session
)
|
🔗 |
Sat 6:00 a.m. - 7:00 a.m.
|
Coffee Break & Poster Session
(
Break & Poster session
)
|
🔗 |
Sat 7:00 a.m. - 7:30 a.m.
|
Jürgen Schmidhuber - Learning how to Learn Learning Algorithms: Recursive Self-Improvement
(
Session
)
|
🔗 |
Sat 7:30 a.m. - 8:00 a.m.
|
Joshua Tenenbaum & Kevin Ellis - Bayesian program learning: Prospects for building more human-like AI systems
(
Session
)
|
🔗 |
Sat 8:00 a.m. - 8:30 a.m.
|
Alex Graves - Learning When to Halt With Adaptive Computation Time
(
Session
)
|
🔗 |
Sat 8:30 a.m. - 9:30 a.m.
|
Debate with Percy Liang, Jürgen Schmidhuber, Joshua Tenenbaum and Martin Vechev
(
Discussion Panel
)
|
🔗 |
Sat 9:30 a.m. - 9:40 a.m.
|
Closing word
|
🔗 |
Author Information
Matko Bošnjak (University College London)
Nando de Freitas (DeepMind)
Tejas Kulkarni (DeepMind)
Arvind Neelakantan (University of Massachusetts Amherst)
Scott E Reed (University of Michigan)
Sebastian Riedel (University College London)
Tim Rocktäschel (University of Oxford)
Tim is a Researcher at Facebook AI Research (FAIR) London, an Associate Professor at the Centre for Artificial Intelligence in the Department of Computer Science at University College London (UCL), and a Scholar of the European Laboratory for Learning and Intelligent Systems (ELLIS). Prior to that, he was a Postdoctoral Researcher in Reinforcement Learning at the University of Oxford, a Junior Research Fellow in Computer Science at Jesus College, and a Stipendiary Lecturer in Computer Science at Hertford College. Tim obtained his Ph.D. from UCL under the supervision of Sebastian Riedel, and he was awarded a Microsoft Research Ph.D. Scholarship in 2013 and a Google Ph.D. Fellowship in 2017. His work focuses on reinforcement learning in open-ended environments that require intrinsically motivated agents capable of transferring commonsense, world and domain knowledge in order to systematically generalize to novel situations.
More from the Same Authors
-
2022 : Multi-step Planning for Automated Hyperparameter Optimization with OptFormer »
Lucio M Dery · Abram Friesen · Nando de Freitas · Marc'Aurelio Ranzato · Yutian Chen -
2022 : Efficient Planning in a Compact Latent Action Space »
zhengyao Jiang · Tianjun Zhang · Michael Janner · Yueying (Lisa) Li · Tim Rocktäschel · Edward Grefenstette · Yuandong Tian -
2022 : MAESTRO: Open-Ended Environment Design for Multi-Agent Reinforcement Learning »
Mikayel Samvelyan · Akbir Khan · Michael Dennis · Minqi Jiang · Jack Parker-Holder · Jakob Foerster · Roberta Raileanu · Tim Rocktäschel -
2023 Poster: Improving Language Plasticity via Pretraining with Active Forgetting »
Yihong Chen · Mikel Artetxe · Kelly Marchisio · Roberta Raileanu · David Adelani · Pontus Lars Erik Saito Stenetorp · Sebastian Riedel -
2023 Poster: The Goldilocks of Pragmatic Understanding: Fine-Tuning Strategy Matters for Implicature Resolution by LLMs »
Laura Ruis · Akbir Khan · Stella Biderman · Sara Hooker · Tim Rocktäschel · Edward Grefenstette -
2022 Poster: Autoregressive Search Engines: Generating Substrings as Document Identifiers »
Michele Bevilacqua · Giuseppe Ottaviano · Patrick Lewis · Scott Yih · Sebastian Riedel · Fabio Petroni -
2022 Poster: Dungeons and Data: A Large-Scale NetHack Dataset »
Eric Hambro · Roberta Raileanu · Danielle Rothermel · Vegard Mella · Tim Rocktäschel · Heinrich Küttler · Naila Murray -
2022 Poster: Learning General World Models in a Handful of Reward-Free Deployments »
Yingchen Xu · Jack Parker-Holder · Aldo Pacchiano · Philip Ball · Oleh Rybkin · S Roberts · Tim Rocktäschel · Edward Grefenstette -
2022 Poster: ReFactor GNNs: Revisiting Factorisation-based Models from a Message-Passing Perspective »
Yihong Chen · Pushkar Mishra · Luca Franceschi · Pasquale Minervini · Pontus Lars Erik Saito Stenetorp · Sebastian Riedel -
2022 Poster: Grounding Aleatoric Uncertainty for Unsupervised Environment Design »
Minqi Jiang · Michael Dennis · Jack Parker-Holder · Andrei Lupu · Heinrich Küttler · Edward Grefenstette · Tim Rocktäschel · Jakob Foerster -
2022 Poster: Towards Learning Universal Hyperparameter Optimizers with Transformers »
Yutian Chen · Xingyou Song · Chansoo Lee · Zi Wang · Richard Zhang · David Dohan · Kazuya Kawakami · Greg Kochanski · Arnaud Doucet · Marc'Aurelio Ranzato · Sagi Perel · Nando de Freitas -
2022 Poster: Improving Policy Learning via Language Dynamics Distillation »
Victor Zhong · Jesse Mu · Luke Zettlemoyer · Edward Grefenstette · Tim Rocktäschel -
2022 Poster: Exploration via Elliptical Episodic Bonuses »
Mikael Henaff · Roberta Raileanu · Minqi Jiang · Tim Rocktäschel -
2022 Poster: GriddlyJS: A Web IDE for Reinforcement Learning »
Christopher Bamford · Minqi Jiang · Mikayel Samvelyan · Tim Rocktäschel -
2022 Poster: Improving Intrinsic Exploration with Language Abstractions »
Jesse Mu · Victor Zhong · Roberta Raileanu · Minqi Jiang · Noah Goodman · Tim Rocktäschel · Edward Grefenstette -
2021 : Retrospective Panel »
Sergey Levine · Nando de Freitas · Emma Brunskill · Finale Doshi-Velez · Nan Jiang · Rishabh Agarwal -
2021 : The NetHack Challenge + Q&A »
Eric Hambro · Sharada Mohanty · Dipam Chakrabroty · Edward Grefenstette · Minqi Jiang · Robert Kirk · Vitaly Kurin · Heinrich Kuttler · Vegard Mella · Nantas Nardelli · Jack Parker-Holder · Roberta Raileanu · Tim Rocktäschel · Danielle Rothermel · Mikayel Samvelyan -
2020 : Panel »
Emma Brunskill · Nan Jiang · Nando de Freitas · Finale Doshi-Velez · Sergey Levine · John Langford · Lihong Li · George Tucker · Rishabh Agarwal · Aviral Kumar -
2020 : Offline RL »
Nando de Freitas -
2020 : Panel »
· Wilka Carvalho · Judith Fan · Tejas Kulkarni · Christopher Xie -
2020 Poster: The NetHack Learning Environment »
Heinrich Küttler · Nantas Nardelli · Alexander Miller · Roberta Raileanu · Marco Selvatici · Edward Grefenstette · Tim Rocktäschel -
2020 Poster: Critic Regularized Regression »
Ziyu Wang · Alexander Novikov · Konrad Zolna · Josh Merel · Jost Tobias Springenberg · Scott Reed · Bobak Shahriari · Noah Siegel · Caglar Gulcehre · Nicolas Heess · Nando de Freitas -
2020 Poster: Modular Meta-Learning with Shrinkage »
Yutian Chen · Abram Friesen · Feryal Behbahani · Arnaud Doucet · David Budden · Matthew Hoffman · Nando de Freitas -
2020 Spotlight: Modular Meta-Learning with Shrinkage »
Yutian Chen · Abram Friesen · Feryal Behbahani · Arnaud Doucet · David Budden · Matthew Hoffman · Nando de Freitas -
2020 Poster: RL Unplugged: A Suite of Benchmarks for Offline Reinforcement Learning »
Caglar Gulcehre · Ziyu Wang · Alexander Novikov · Thomas Paine · Sergio Gómez · Konrad Zolna · Rishabh Agarwal · Josh Merel · Daniel Mankowitz · Cosmin Paduraru · Gabriel Dulac-Arnold · Jerry Li · Mohammad Norouzi · Matthew Hoffman · Nicolas Heess · Nando de Freitas -
2019 Workshop: Science meets Engineering of Deep Learning »
Levent Sagun · Caglar Gulcehre · Adriana Romero Soriano · Negar Rostamzadeh · Nando de Freitas -
2019 : Welcoming remarks and introduction »
Levent Sagun · Caglar Gulcehre · Adriana Romero Soriano · Negar Rostamzadeh · Nando de Freitas -
2019 Poster: Unsupervised Learning of Object Keypoints for Perception and Control »
Tejas Kulkarni · Ankush Gupta · Catalin Ionescu · Sebastian Borgeaud · Malcolm Reynolds · Andrew Zisserman · Volodymyr Mnih -
2019 Poster: Learning Compositional Neural Programs with Recursive Tree Search and Planning »
Thomas PIERROT · Guillaume Ligner · Scott Reed · Olivier Sigaud · Nicolas Perrin · Alexandre Laterre · David Kas · Karim Beguir · Nando de Freitas -
2019 Spotlight: Learning Compositional Neural Programs with Recursive Tree Search and Planning »
Thomas PIERROT · Guillaume Ligner · Scott Reed · Olivier Sigaud · Nicolas Perrin · Alexandre Laterre · David Kas · Karim Beguir · Nando de Freitas -
2018 : TBA 5 »
Nando de Freitas -
2018 : Invited Talk 5: Nando de Freitas »
Nando de Freitas -
2018 : Poster Session 1 + Coffee »
Tom Van de Wiele · Rui Zhao · J. Fernando Hernandez-Garcia · Fabio Pardo · Xian Yeow Lee · Xiaolin Andy Li · Marcin Andrychowicz · Jie Tang · Suraj Nair · Juhyeon Lee · Cédric Colas · S. M. Ali Eslami · Yen-Chen Wu · Stephen McAleer · Ryan Julian · Yang Xue · Matthia Sabatelli · Pranav Shyam · Alexandros Kalousis · Giovanni Montana · Emanuele Pesce · Felix Leibfried · Zhanpeng He · Chunxiao Liu · Yanjun Li · Yoshihide Sawada · Alexander Pashevich · Tejas Kulkarni · Keiran Paster · Luca Rigazio · Quan Vuong · Hyunggon Park · Minhae Kwon · Rivindu Weerasekera · Shamane Siriwardhanaa · Rui Wang · Ozsel Kilinc · Keith Ross · Yizhou Wang · Simon Schmitt · Thomas Anthony · Evan Cater · Forest Agostinelli · Tegg Sung · Shirou Maruyama · Alexander Shmakov · Devin Schwab · Mohammad Firouzi · Glen Berseth · Denis Osipychev · Jesse Farebrother · Jianlan Luo · William Agnew · Peter Vrancx · Jonathan Heek · Catalin Ionescu · Haiyan Yin · Megumi Miyashita · Nathan Jay · Noga H. Rotman · Sam Leroux · Shaileshh Bojja Venkatakrishnan · Henri Schmidt · Jack Terwilliger · Ishan Durugkar · Jonathan Sauder · David Kas · Arash Tavakoli · Alain-Sam Cohen · Philip Bontrager · Adam Lerer · Thomas Paine · Ahmed Khalifa · Ruben Rodriguez · Avi Singh · Yiming Zhang -
2018 Poster: Playing hard exploration games by watching YouTube »
Yusuf Aytar · Tobias Pfaff · David Budden · Thomas Paine · Ziyu Wang · Nando de Freitas -
2018 Spotlight: Playing hard exploration games by watching YouTube »
Yusuf Aytar · Tobias Pfaff · David Budden · Thomas Paine · Ziyu Wang · Nando de Freitas -
2018 Poster: e-SNLI: Natural Language Inference with Natural Language Explanations »
Oana-Maria Camburu · Tim Rocktäschel · Thomas Lukasiewicz · Phil Blunsom -
2017 Workshop: Workshop on Prioritising Online Content »
John Shawe-Taylor · Massimiliano Pontil · Nicolò Cesa-Bianchi · Emine Yilmaz · Chris Watkins · Sebastian Riedel · Marko Grobelnik -
2017 Workshop: Learning Disentangled Features: from Perception to Control »
Emily Denton · Siddharth Narayanaswamy · Tejas Kulkarni · Honglak Lee · Diane Bouchacourt · Josh Tenenbaum · David Pfau -
2017 : Reading and Reasoning with Neural Program Interpreters »
Sebastian Riedel -
2017 Workshop: 6th Workshop on Automated Knowledge Base Construction (AKBC) »
Jay Pujara · Dor Arad · Bhavana Dalvi Mishra · Tim Rocktäschel -
2017 Poster: End-to-End Differentiable Proving »
Tim Rocktäschel · Sebastian Riedel -
2017 Oral: End-to-end Differentiable Proving »
Tim Rocktäschel · Sebastian Riedel -
2017 Poster: Self-Supervised Intrinsic Image Decomposition »
Michael Janner · Jiajun Wu · Tejas Kulkarni · Ilker Yildirim · Josh Tenenbaum -
2017 Poster: Robust Imitation of Diverse Behaviors »
Ziyu Wang · Josh Merel · Scott Reed · Nando de Freitas · Gregory Wayne · Nicolas Heess -
2017 Tutorial: Deep Learning: Practice and Trends »
Nando de Freitas · Scott Reed · Oriol Vinyals -
2016 : Nando De Freitas »
Nando de Freitas -
2016 : Learning To Optimize »
Nando de Freitas -
2016 Poster: Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation »
Tejas Kulkarni · Karthik Narasimhan · Ardavan Saeedi · Josh Tenenbaum -
2016 Poster: Learning What and Where to Draw »
Scott E Reed · Zeynep Akata · Santosh Mohan · Samuel Tenka · Bernt Schiele · Honglak Lee -
2016 Oral: Learning What and Where to Draw »
Scott E Reed · Zeynep Akata · Santosh Mohan · Samuel Tenka · Bernt Schiele · Honglak Lee -
2016 Poster: Learning to learn by gradient descent by gradient descent »
Marcin Andrychowicz · Misha Denil · Sergio Gómez · Matthew Hoffman · David Pfau · Tom Schaul · Nando de Freitas -
2015 Workshop: Bayesian Optimization: Scalability and Flexibility »
Bobak Shahriari · Ryan Adams · Nando de Freitas · Amar Shah · Roberto Calandra -
2015 Workshop: Black box learning and inference »
Josh Tenenbaum · Jan-Willem van de Meent · Tejas Kulkarni · S. M. Ali Eslami · Brooks Paige · Frank Wood · Zoubin Ghahramani -
2015 Poster: Deep Visual Analogy-Making »
Scott E Reed · Yi Zhang · Yuting Zhang · Honglak Lee -
2015 Poster: Deep Convolutional Inverse Graphics Network »
Tejas Kulkarni · William Whitney · Pushmeet Kohli · Josh Tenenbaum -
2015 Spotlight: Deep Convolutional Inverse Graphics Network »
Tejas Kulkarni · William Whitney · Pushmeet Kohli · Josh Tenenbaum -
2015 Oral: Deep Visual Analogy-Making »
Scott E Reed · Yi Zhang · Yuting Zhang · Honglak Lee -
2015 Poster: Weakly-supervised Disentangling with Recurrent Transformations for 3D View Synthesis »
Jimei Yang · Scott E Reed · Ming-Hsuan Yang · Honglak Lee -
2014 Workshop: 3rd NIPS Workshop on Probabilistic Programming »
Daniel Roy · Josh Tenenbaum · Thomas Dietterich · Stuart J Russell · YI WU · Ulrik R Beierholm · Alp Kucukelbir · Zenna Tavares · Yura Perov · Daniel Lee · Brian Ruttenberg · Sameer Singh · Michael Hughes · Marco Gaboardi · Alexey Radul · Vikash Mansinghka · Frank Wood · Sebastian Riedel · Prakash Panangaden -
2014 Workshop: 4th Workshop on Automated Knowledge Base Construction (AKBC) »
Sameer Singh · Fabian M Suchanek · Sebastian Riedel · Partha Pratim Talukdar · Kevin Murphy · Christopher Ré · William Cohen · Tom Mitchell · Andrew McCallum · Jason E Weston · Ramanathan Guha · Boyan Onyshkevych · Hoifung Poon · Oren Etzioni · Ari Kobren · Arvind Neelakantan · Peter Clark -
2014 Demonstration: A Visual and Interactive IDE for Probabilistic Programming »
Sameer Singh · Luke Hewitt · Tim Rocktäschel · Sebastian Riedel