Timezone: »
Extreme classification, where one needs to deal with multi-class and multi-label problems involving a very large number of labels, has opened up a new research frontier in machine learning. Many challenging applications, such as photo or video annotation, web page categorization, gene function prediction, language modeling can benefit from being formulated as supervised learning tasks with millions, or even billions, of labels. Extreme classification can also give a fresh perspective on core learning problems such as ranking and recommendation by reformulating them as multi-class/label tasks where each item to be ranked or recommended is a separate label.
Extreme classification raises a number of interesting research questions including those related to:
* Large scale learning and distributed and parallel training
* Log-time and log-space prediction and prediction on a test-time budget
* Label embedding and tree-based approaches
* Crowd sourcing, preference elicitation and other data gathering techniques
* Bandits, semi-supervised learning and other approaches for dealing with training set biases and label noise
* Bandits with an extremely large number of arms
* Fine-grained classification
* Zero shot learning and extensible output spaces
* Tackling label polysemy, synonymy and correlations
* Structured output prediction and multi-task learning
* Learning from highly imbalanced data
* Dealing with tail labels and learning from very few data points per label
* PU learning and learning from missing and incorrect labels
* Feature extraction, feature sharing, lazy feature evaluation, etc.
* Performance evaluation
* Statistical analysis and generalization bounds
* Applications to ranking, recommendation, knowledge graph construction and other domains
The workshop aims to bring together researchers interested in these areas to encourage discussion and improve upon the state-of-the-art in extreme classification. In particular, we aim to bring together researchers from the natural language processing, computer vision and core machine learning communities to foster interaction and collaboration. Several leading researchers will present invited talks detailing the latest advances in the area. We also seek extended abstracts presenting work in progress which will be reviewed for acceptance as spotlight+poster or a talk. The workshop should be of interest to researchers in core supervised learning as well as application domains such as recommender systems, computer vision, computational advertising, information retrieval and natural language processing. We expect a healthy participation from both industry and academia.
http://www.manikvarma.org/events/XC16/schedule.html
Author Information
Moustapha Cisse (Facebook AI Research)
Manik Varma (Microsoft Research India)
Samy Bengio (Google Brain)
More from the Same Authors
-
2020 Poster: Memory Based Trajectory-conditioned Policies for Learning from Sparse Rewards »
Yijie Guo · Jongwook Choi · Marcin Moczulski · Shengyu Feng · Samy Bengio · Mohammad Norouzi · Honglak Lee -
2020 Poster: RNNPool: Efficient Non-linear Pooling for RAM Constrained Inference »
Oindrila Saha · Aditya Kusupati · Harsha Vardhan Simhadri · Manik Varma · Prateek Jain -
2020 Spotlight: RNNPool: Efficient Non-linear Pooling for RAM Constrained Inference »
Oindrila Saha · Aditya Kusupati · Harsha Vardhan Simhadri · Manik Varma · Prateek Jain -
2019 Poster: Transfusion: Understanding Transfer Learning for Medical Imaging »
Maithra Raghu · Chiyuan Zhang · Jon Kleinberg · Samy Bengio -
2018 Poster: Large Margin Deep Networks for Classification »
Gamaleldin Elsayed · Dilip Krishnan · Hossein Mobahi · Kevin Regan · Samy Bengio -
2018 Poster: FastGRNN: A Fast, Accurate, Stable and Tiny Kilobyte Sized Gated Recurrent Neural Network »
Aditya Kusupati · Manish Singh · Kush Bhatia · Ashish Kumar · Prateek Jain · Manik Varma -
2018 Poster: Insights on representational similarity in neural networks with canonical correlation »
Ari Morcos · Maithra Raghu · Samy Bengio -
2018 Poster: Content preserving text generation with attribute controls »
Lajanugen Logeswaran · Honglak Lee · Samy Bengio -
2017 Workshop: Extreme Classification: Multi-class & Multi-label Learning in Extremely Large Label Spaces »
Manik Varma · Marius Kloft · Krzysztof Dembczynski -
2016 Poster: Can Active Memory Replace Attention? »
Ćukasz Kaiser · Samy Bengio -
2016 Poster: An Online Sequence-to-Sequence Model Using Partial Conditioning »
Navdeep Jaitly · Quoc V Le · Oriol Vinyals · Ilya Sutskever · David Sussillo · Samy Bengio -
2016 Poster: Reward Augmented Maximum Likelihood for Neural Structured Prediction »
Mohammad Norouzi · Samy Bengio · zhifeng Chen · Navdeep Jaitly · Mike Schuster · Yonghui Wu · Dale Schuurmans -
2015 Workshop: Extreme Classification 2015: Multi-class and Multi-label Learning in Extremely Large Label Spaces »
Manik Varma · Moustapha M Cisse -
2015 Poster: Sparse Local Embeddings for Extreme Multi-label Classification »
Kush Bhatia · Himanshu Jain · Purushottam Kar · Manik Varma · Prateek Jain -
2015 Poster: Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks »
Samy Bengio · Oriol Vinyals · Navdeep Jaitly · Noam Shazeer -
2013 Workshop: Output Representation Learning »
Yuhong Guo · Dale Schuurmans · Richard Zemel · Samy Bengio · Yoshua Bengio · Li Deng · Dan Roth · Kilian Q Weinberger · Jason Weston · Kihyuk Sohn · Florent Perronnin · Gabriel Synnaeve · Pablo R Strasser · julien audiffren · Carlo Ciliberto · Dan Goldwasser -
2013 Workshop: Extreme Classification: Multi-Class & Multi-Label Learning with Millions of Categories »
Manik Varma · John Langford -
2013 Poster: DeViSE: A Deep Visual-Semantic Embedding Model »
Andrea Frome · Greg Corrado · Jon Shlens · Samy Bengio · Jeff Dean · Marc'Aurelio Ranzato · Tomas Mikolov -
2012 Workshop: Big Data Meets Computer Vision: First International Workshop on Large Scale Visual Recognition and Retrieval »
Jia Deng · Samy Bengio · Yuanqing Lin · Li Fei-Fei -
2010 Poster: Label Embedding Trees for Large Multi-Class Tasks »
Samy Bengio · Jason E Weston · David Grangier -
2010 Spotlight: Multiple Kernel Learning and the SMO Algorithm »
S.V.N. Vishwanathan · Zhaonan sun · Nawanol T Ampornpunt · Manik Varma -
2010 Poster: Multiple Kernel Learning and the SMO Algorithm »
S.V.N. Vishwanathan · Zhaonan sun · Nawanol T Ampornpunt · Manik Varma -
2009 Poster: Group Sparse Coding »
Samy Bengio · Fernando Pereira · Yoram Singer · Dennis Strelow -
2009 Poster: An Online Algorithm for Large Scale Image Similarity Learning »
Gal Chechik · Uri Shalit · Varun Sharma · Samy Bengio -
2007 Workshop: Efficient Machine Learning - Overcoming Computational Bottlenecks in Machine Learning (Part 2) »
Samy Bengio · Corinna Cortes · Dennis DeCoste · Francois Fleuret · Ramesh Natarajan · Edwin Pednault · Dan Pelleg · Elad Yom-Tov -
2007 Workshop: Efficient Machine Learning - Overcoming Computational Bottlenecks in Machine Learning (Part 1) »
Samy Bengio · Corinna Cortes · Dennis DeCoste · Francois Fleuret · Ramesh Natarajan · Edwin Pednault · Dan Pelleg · Elad Yom-Tov -
2006 Workshop: Learning to Compare Examples »
David Grangier · Samy Bengio