Timezone: »
Poster
Efficient and Parsimonious Agnostic Active Learning
Tzu-Kuo Huang · Alekh Agarwal · Daniel Hsu · John Langford · Robert Schapire
We develop a new active learning algorithm for the streaming settingsatisfying three important properties: 1) It provably works for anyclassifier representation and classification problem including thosewith severe noise. 2) It is efficiently implementable with an ERMoracle. 3) It is more aggressive than all previous approachessatisfying 1 and 2. To do this, we create an algorithm based on a newlydefined optimization problem and analyze it. We also conduct the firstexperimental analysis of all efficient agnostic active learningalgorithms, evaluating their strengths and weaknesses in differentsettings.
Author Information
Tzu-Kuo Huang (Microsoft)
Alekh Agarwal (Microsoft Research)
Daniel Hsu (Columbia University)
See <https://www.cs.columbia.edu/~djhsu/>
John Langford (Microsoft Research New York)
Robert Schapire (MIcrosoft Research)
More from the Same Authors
-
2020 : Biased Programmers? Or Biased Data? A Field Experiment in Operationalizing AI Ethics »
Bo Cowgill · Fabrizio Dell'Acqua · Augustin Chaintreau · Nakul Verma · Samuel Deng · Daniel Hsu -
2021 Spotlight: Bayesian decision-making under misspecified priors with applications to meta-learning »
Max Simchowitz · Christopher Tosh · Akshay Krishnamurthy · Daniel Hsu · Thodoris Lykouris · Miro Dudik · Robert Schapire -
2022 : John Langford »
John Langford -
2022 Poster: Masked Prediction: A Parameter Identifiability View »
Bingbin Liu · Daniel Hsu · Pradeep Ravikumar · Andrej Risteski -
2022 Poster: Provably sample-efficient RL with side information about latent dynamics »
Yao Liu · Dipendra Misra · Miro Dudik · Robert Schapire -
2021 Poster: Support vector machines and linear regression coincide with very high-dimensional features »
Navid Ardeshir · Clayton Sanford · Daniel Hsu -
2021 Poster: Multiclass Boosting and the Cost of Weak Learning »
Nataly Brukhim · Elad Hazan · Shay Moran · Indraneel Mukherjee · Robert Schapire -
2021 Poster: Bayesian decision-making under misspecified priors with applications to meta-learning »
Max Simchowitz · Christopher Tosh · Akshay Krishnamurthy · Daniel Hsu · Thodoris Lykouris · Miro Dudik · Robert Schapire -
2020 : Panel »
Emma Brunskill · Nan Jiang · Nando de Freitas · Finale Doshi-Velez · Sergey Levine · John Langford · Lihong Li · George Tucker · Rishabh Agarwal · Aviral Kumar -
2020 : Causal Structure Discovery in RL »
John Langford -
2020 Poster: Empirical Likelihood for Contextual Bandits »
Nikos Karampatziakis · John Langford · Paul Mineiro -
2020 Poster: Ensuring Fairness Beyond the Training Data »
Debmalya Mandal · Samuel Deng · Suman Jana · Jeannette Wing · Daniel Hsu -
2020 Poster: Efficient Contextual Bandits with Continuous Actions »
Maryam Majzoubi · Chicheng Zhang · Rajan Chari · Akshay Krishnamurthy · John Langford · Aleksandrs Slivkins -
2020 Poster: Learning the Linear Quadratic Regulator from Nonlinear Observations »
Zakaria Mhammedi · Dylan Foster · Max Simchowitz · Dipendra Misra · Wen Sun · Akshay Krishnamurthy · Alexander Rakhlin · John Langford -
2020 : Real World RL with Vowpal Wabbit: Beyond Contextual Bandits »
John Langford · Marek Wydmuch · Maryam Majzoubi · Adith Swaminathan · · Dylan Foster · Paul Mineiro -
2019 : Poster and Coffee Break 1 »
Aaron Sidford · Aditya Mahajan · Alejandro Ribeiro · Alex Lewandowski · Ali H Sayed · Ambuj Tewari · Angelika Steger · Anima Anandkumar · Asier Mujika · Hilbert J Kappen · Bolei Zhou · Byron Boots · Chelsea Finn · Chen-Yu Wei · Chi Jin · Ching-An Cheng · Christina Yu · Clement Gehring · Craig Boutilier · Dahua Lin · Daniel McNamee · Daniel Russo · David Brandfonbrener · Denny Zhou · Devesh Jha · Diego Romeres · Doina Precup · Dominik Thalmeier · Eduard Gorbunov · Elad Hazan · Elena Smirnova · Elvis Dohmatob · Emma Brunskill · Enrique Munoz de Cote · Ethan Waldie · Florian Meier · Florian Schaefer · Ge Liu · Gergely Neu · Haim Kaplan · Hao Sun · Hengshuai Yao · Jalaj Bhandari · James A Preiss · Jayakumar Subramanian · Jiajin Li · Jieping Ye · Jimmy Smith · Joan Bas Serrano · Joan Bruna · John Langford · Jonathan Lee · Jose A. Arjona-Medina · Kaiqing Zhang · Karan Singh · Yuping Luo · Zafarali Ahmed · Zaiwei Chen · Zhaoran Wang · Zhizhong Li · Zhuoran Yang · Ziping Xu · Ziyang Tang · Yi Mao · David Brandfonbrener · Shirli Di-Castro · Riashat Islam · Zuyue Fu · Abhishek Naik · Saurabh Kumar · Benjamin Petit · Angeliki Kamoutsi · Simone Totaro · Arvind Raghunathan · Rui Wu · Donghwan Lee · Dongsheng Ding · Alec Koppel · Hao Sun · Christian Tjandraatmadja · Mahdi Karami · Jincheng Mei · Chenjun Xiao · Junfeng Wen · Zichen Zhang · Ross Goroshin · Mohammad Pezeshki · Jiaqi Zhai · Philip Amortila · Shuo Huang · Mariya Vasileva · El houcine Bergou · Adel Ahmadyan · Haoran Sun · Sheng Zhang · Lukas Gruber · Yuanhao Wang · Tetiana Parshakova -
2019 : Poster Spotlight 1 »
David Brandfonbrener · Joan Bruna · Tom Zahavy · Haim Kaplan · Yishay Mansour · Nikos Karampatziakis · John Langford · Paul Mineiro · Donghwan Lee · Niao He -
2019 Poster: Efficient Forward Architecture Search »
Hanzhang Hu · John Langford · Rich Caruana · Saurajit Mukherjee · Eric Horvitz · Debadeepta Dey -
2019 Poster: Reinforcement Learning with Convex Constraints »
Sobhan Miryoosefi · Kianté Brantley · Hal Daumé III · Miro Dudik · Robert Schapire -
2019 Poster: On the number of variables to use in principal component regression »
Ji Xu · Daniel Hsu -
2018 Poster: Overfitting or perfect fitting? Risk bounds for classification and regression rules that interpolate »
Mikhail Belkin · Daniel Hsu · Partha P Mitra -
2018 Poster: Benefits of over-parameterization with EM »
Ji Xu · Daniel Hsu · Arian Maleki -
2018 Poster: On Oracle-Efficient PAC RL with Rich Observations »
Christoph Dann · Nan Jiang · Akshay Krishnamurthy · Alekh Agarwal · John Langford · Robert Schapire -
2018 Poster: Leveraged volume sampling for linear regression »
Michal Derezinski · Manfred K. Warmuth · Daniel Hsu -
2018 Spotlight: On Oracle-Efficient PAC RL with Rich Observations »
Christoph Dann · Nan Jiang · Akshay Krishnamurthy · Alekh Agarwal · John Langford · Robert Schapire -
2018 Spotlight: Leveraged volume sampling for linear regression »
Michal Derezinski · Manfred K. Warmuth · Daniel Hsu -
2017 : Panel »
Garth Gibson · Joseph Gonzalez · John Langford · Dawn Song -
2017 : John Langford (MSR) on Dreaming Contextual Memory »
John Langford -
2017 Workshop: OPT 2017: Optimization for Machine Learning »
Suvrit Sra · Sashank J. Reddi · Alekh Agarwal · Benjamin Recht -
2017 Poster: Off-policy evaluation for slate recommendation »
Adith Swaminathan · Akshay Krishnamurthy · Alekh Agarwal · Miro Dudik · John Langford · Damien Jose · Imed Zitouni -
2017 Oral: Off-policy evaluation for slate recommendation »
Adith Swaminathan · Akshay Krishnamurthy · Alekh Agarwal · Miro Dudik · John Langford · Damien Jose · Imed Zitouni -
2017 Poster: Linear regression without correspondence »
Daniel Hsu · Kevin Shi · Xiaorui Sun -
2016 Poster: Efficient Second Order Online Learning by Sketching »
Haipeng Luo · Alekh Agarwal · Nicolò Cesa-Bianchi · John Langford -
2016 Poster: Improved Regret Bounds for Oracle-Based Adversarial Contextual Bandits »
Vasilis Syrgkanis · Haipeng Luo · Akshay Krishnamurthy · Robert Schapire -
2016 Poster: A Credit Assignment Compiler for Joint Prediction »
Kai-Wei Chang · He He · Stephane Ross · Hal Daumé III · John Langford -
2016 Poster: Global Analysis of Expectation Maximization for Mixtures of Two Gaussians »
Ji Xu · Daniel Hsu · Arian Maleki -
2016 Oral: Global Analysis of Expectation Maximization for Mixtures of Two Gaussians »
Ji Xu · Daniel Hsu · Arian Maleki -
2016 Poster: PAC Reinforcement Learning with Rich Observations »
Akshay Krishnamurthy · Alekh Agarwal · John Langford -
2016 Poster: Search Improves Label for Active Learning »
Alina Beygelzimer · Daniel Hsu · John Langford · Chicheng Zhang -
2015 Poster: Mixing Time Estimation in Reversible Markov Chains from a Single Sample Path »
Daniel Hsu · Aryeh Kontorovich · Csaba Szepesvari -
2015 Poster: Logarithmic Time Online Multiclass prediction »
Anna Choromanska · John Langford -
2015 Spotlight: Logarithmic Time Online Multiclass prediction »
Anna Choromanska · John Langford -
2015 Spotlight: Efficient and Parsimonious Agnostic Active Learning »
Tzu-Kuo Huang · Alekh Agarwal · Daniel Hsu · John Langford · Robert Schapire -
2015 Poster: Fast Convergence of Regularized Learning in Games »
Vasilis Syrgkanis · Alekh Agarwal · Haipeng Luo · Robert Schapire -
2015 Oral: Fast Convergence of Regularized Learning in Games »
Vasilis Syrgkanis · Alekh Agarwal · Haipeng Luo · Robert Schapire -
2014 Poster: Scalable Non-linear Learning with Adaptive Polynomial Expansions »
Alekh Agarwal · Alina Beygelzimer · Daniel Hsu · John Langford · Matus J Telgarsky -
2014 Poster: The Large Margin Mechanism for Differentially Private Maximization »
Kamalika Chaudhuri · Daniel Hsu · Shuang Song -
2013 Workshop: Learning Faster From Easy Data »
Peter Grünwald · Wouter M Koolen · Sasha Rakhlin · Nati Srebro · Alekh Agarwal · Karthik Sridharan · Tim van Erven · Sebastien Bubeck -
2013 Workshop: Workshop on Spectral Learning »
Byron Boots · Daniel Hsu · Borja Balle -
2013 Workshop: OPT2013: Optimization for Machine Learning »
Suvrit Sra · Alekh Agarwal -
2013 Workshop: Extreme Classification: Multi-Class & Multi-Label Learning with Millions of Categories »
Manik Varma · John Langford -
2013 Poster: Learning Hidden Markov Models from Non-sequence Data via Tensor Decomposition »
Tzu-Kuo Huang · Jeff Schneider -
2013 Poster: When are Overcomplete Topic Models Identifiable? Uniqueness of Tensor Tucker Decompositions with Structured Sparsity »
Anima Anandkumar · Daniel Hsu · Majid Janzamin · Sham M Kakade -
2013 Poster: Contrastive Learning Using Spectral Methods »
James Y Zou · Daniel Hsu · David Parkes · Ryan Adams -
2012 Poster: Learning Mixtures of Tree Graphical Models »
Anima Anandkumar · Daniel Hsu · Furong Huang · Sham M Kakade -
2012 Poster: A Spectral Algorithm for Latent Dirichlet Allocation »
Anima Anandkumar · Dean P Foster · Daniel Hsu · Sham M Kakade · Yi-Kai Liu -
2012 Poster: Identifiability and Unmixing of Latent Parse Trees »
Percy Liang · Sham M Kakade · Daniel Hsu -
2012 Spotlight: A Spectral Algorithm for Latent Dirichlet Allocation »
Anima Anandkumar · Dean P Foster · Daniel Hsu · Sham M Kakade · Yi-Kai Liu -
2011 Poster: Stochastic convex optimization with bandit feedback »
Alekh Agarwal · Dean P Foster · Daniel Hsu · Sham M Kakade · Sasha Rakhlin -
2011 Poster: Spectral Methods for Learning Multivariate Latent Tree Structure »
Anima Anandkumar · Kamalika Chaudhuri · Daniel Hsu · Sham M Kakade · Le Song · Tong Zhang -
2011 Poster: Learning Auto-regressive Models from Sequence and Non-sequence Data »
Tzu-Kuo Huang · Jeff Schneider -
2010 Poster: Agnostic Active Learning Without Constraints »
Alina Beygelzimer · Daniel Hsu · John Langford · Tong Zhang -
2009 Poster: A Parameter-free Hedging Algorithm »
Kamalika Chaudhuri · Yoav Freund · Daniel Hsu -
2009 Poster: Multi-Label Prediction via Compressed Sensing »
Daniel Hsu · Sham M Kakade · John Langford · Tong Zhang -
2009 Oral: Multi-Label Prediction via Compressed Sensing »
Daniel Hsu · Sham M Kakade · John Langford · Tong Zhang -
2007 Spotlight: A general agnostic active learning algorithm »
Sanjoy Dasgupta · Daniel Hsu · Claire Monteleoni -
2007 Poster: A general agnostic active learning algorithm »
Sanjoy Dasgupta · Daniel Hsu · Claire Monteleoni