Timezone: »

 
Poster
The Return of the Gating Network: Combining Generative Models and Discriminative Training in Natural Image Priors
Dan Rosenbaum · Yair Weiss

Wed Dec 09 04:00 PM -- 08:59 PM (PST) @ 210 C #12 #None

In recent years, approaches based on machine learning have achieved state-of-the-art performance on image restoration problems. Successful approaches include both generative models of natural images as well as discriminative training of deep neural networks. Discriminative training of feed forward architectures allows explicit control over the computational cost of performing restoration and therefore often leads to better performance at the same cost at run time. In contrast, generative models have the advantage that they can be trained once and then adapted to any image restoration task by a simple use of Bayes' rule. In this paper we show how to combine the strengths of both approaches by training a discriminative, feed-forward architecture to predict the state of latent variables in a generative model of natural images. We apply this idea to the very successful Gaussian Mixture Model (GMM) of natural images. We show that it is possible to achieve comparable performance as the original GMM but with two orders of magnitude improvement in run time while maintaining the advantage of generative models.

Author Information

Dan Rosenbaum (The Hebrew University)
Yair Weiss (Hebrew University)

Yair Weiss is an Associate Professor at the Hebrew University School of Computer Science and Engineering. He received his Ph.D. from MIT working with Ted Adelson on motion analysis and did postdoctoral work at UC Berkeley. Since 2005 he has been a fellow of the Canadian Institute for Advanced Research. With his students and colleagues he has co-authored award winning papers in NIPS (2002),ECCV (2006), UAI (2008) and CVPR (2009).

More from the Same Authors