Timezone: »
Rodents navigating in a well-known environment can rapidly learn and revisit observed reward locations, often after a single trial. While the mechanism for rapid path planning is unknown, the CA3 region in the hippocampus plays an important role, and emerging evidence suggests that place cell activity during hippocampal "preplay" periods may trace out future goal-directed trajectories. Here, we show how a particular mapping of space allows for the immediate generation of trajectories between arbitrary start and goal locations in an environment, based only on the mapped representation of the goal. We show that this representation can be implemented in a neural attractor network model, resulting in bump--like activity profiles resembling those of the CA3 region of hippocampus. Neurons tend to locally excite neurons with similar place field centers, while inhibiting other neurons with distant place field centers, such that stable bumps of activity can form at arbitrary locations in the environment. The network is initialized to represent a point in the environment, then weakly stimulated with an input corresponding to an arbitrary goal location. We show that the resulting activity can be interpreted as a gradient ascent on the value function induced by a reward at the goal location. Indeed, in networks with large place fields, we show that the network properties cause the bump to move smoothly from its initial location to the goal, around obstacles or walls. Our results illustrate that an attractor network with hippocampal-like attributes may be important for rapid path planning.
Author Information
Dane S Corneil (EPFL)
Wulfram Gerstner (EPFL)
More from the Same Authors
-
2015 Oral: Attractor Network Dynamics Enable Preplay and Rapid Path Planning in Maze–like Environments »
Dane S Corneil · Wulfram Gerstner -
2011 Poster: Variational Learning for Recurrent Spiking Networks »
Danilo J Rezende · Daan Wierstra · Wulfram Gerstner -
2011 Poster: From Stochastic Nonlinear Integrate-and-Fire to Generalized Linear Models »
Skander Mensi · Richard Naud · Wulfram Gerstner -
2010 Poster: Rescaling, thinning or complementing? On goodness-of-fit procedures for point process models and Generalized Linear Models »
Felipe Gerhard · Wulfram Gerstner -
2009 Poster: Code-specific policy gradient rules for spiking neurons »
Henning Sprekeler · Guillaume Hennequin · Wulfram Gerstner -
2008 Poster: Stress, noradrenaline, and realistic prediction of mouse behaviour using reinforcement learning »
Gediminas Luksys · Carmen Sandi · Wulfram Gerstner -
2008 Oral: Stress, noradrenaline, and realistic prediction of mouse behaviour using reinforcement learning »
Gediminas Luksys · Carmen Sandi · Wulfram Gerstner -
2007 Poster: An online Hebbian learning rule that performs Independent Component Analysis »
Claudia Clopath · André Longtin · Wulfram Gerstner -
2006 Poster: Effects of Stress and Genotype on Meta-parameter Dynamics in Reinforcement Learning »
Gediminas Luksys · Jeremie Knuesel · Denis Sheynikhovich · Carmen Sandi · Wulfram Gerstner