Timezone: »
This paper develops a general approach, rooted in statistical learning theory, to learning an approximately revenue-maximizing auction from data. We introduce t-level auctions to interpolate between simple auctions, such as welfare maximization with reserve prices, and optimal auctions, thereby balancing the competing demands of expressivity and simplicity. We prove that such auctions have small representation error, in the sense that for every product distribution F over bidders’ valuations, there exists a t-level auction with small t and expected revenue close to optimal. We show that the set of t-level auctions has modest pseudo-dimension (for polynomial t) and therefore leads to small learning error. One consequence of our results is that, in arbitrary single-parameter settings, one can learn a mechanism with expected revenue arbitrarily close to optimal from a polynomial number of samples.
Author Information
Jamie Morgenstern (University of Pennsylvania)
Tim Roughgarden (Stanford University)
More from the Same Authors
-
2019 Poster: Multi-Criteria Dimensionality Reduction with Applications to Fairness »
Uthaipon Tantipongpipat · Samira Samadi · Mohit Singh · Jamie Morgenstern · Santosh Vempala -
2019 Spotlight: Multi-Criteria Dimensionality Reduction with Applications to Fairness »
Uthaipon Tantipongpipat · Samira Samadi · Mohit Singh · Jamie Morgenstern · Santosh Vempala -
2019 Poster: Learning Auctions with Robust Incentive Guarantees »
Jacob Abernethy · Rachel Cummings · Bhuvesh Kumar · Sam Taggart · Jamie Morgenstern -
2018 Poster: Optimal Algorithms for Continuous Non-monotone Submodular and DR-Submodular Maximization »
Rad Niazadeh · Tim Roughgarden · Joshua Wang -
2018 Oral: Optimal Algorithms for Continuous Non-monotone Submodular and DR-Submodular Maximization »
Rad Niazadeh · Tim Roughgarden · Joshua Wang -
2017 Workshop: Learning in the Presence of Strategic Behavior »
Nika Haghtalab · Yishay Mansour · Tim Roughgarden · Vasilis Syrgkanis · Jennifer Wortman Vaughan -
2017 Poster: Online Prediction with Selfish Experts »
Tim Roughgarden · Okke Schrijvers -
2016 Poster: Fairness in Learning: Classic and Contextual Bandits »
Matthew Joseph · Michael Kearns · Jamie Morgenstern · Aaron Roth -
2015 Spotlight: On the Pseudo-Dimension of Nearly Optimal Auctions »
Jamie Morgenstern · Tim Roughgarden -
2013 Poster: Marginals-to-Models Reducibility »
Tim Roughgarden · Michael Kearns