Timezone: »

Expectation Particle Belief Propagation
Thibaut Lienart · Yee Whye Teh · Arnaud Doucet

Mon Dec 07 04:00 PM -- 08:59 PM (PST) @ 210 C #42 #None

We propose an original particle-based implementation of the Loopy Belief Propagation (LPB) algorithm for pairwise Markov Random Fields (MRF) on a continuous state space. The algorithm constructs adaptively efficient proposal distributions approximating the local beliefs at each note of the MRF. This is achieved by considering proposal distributions in the exponential family whose parameters are updated iterately in an Expectation Propagation (EP) framework. The proposed particle scheme provides consistent estimation of the LBP marginals as the number of particles increases. We demonstrate that it provides more accurate results than the Particle Belief Propagation (PBP) algorithm of Ihler and McAllester (2009) at a fraction of the computational cost and is additionally more robust empirically. The computational complexity of our algorithm at each iteration is quadratic in the number of particles. We also propose an accelerated implementation with sub-quadratic computational complexity which still provides consistent estimates of the loopy BP marginal distributions and performs almost as well as the original procedure.

Author Information

Thibaut Lienart (University of Oxford)
Yee Whye Teh (University of Oxford)

I am a Professor of Statistical Machine Learning at the Department of Statistics, University of Oxford and a Research Scientist at DeepMind. I am also an Alan Turing Institute Fellow and a European Research Council Consolidator Fellow. I obtained my Ph.D. at the University of Toronto (working with Geoffrey Hinton), and did postdoctoral work at the University of California at Berkeley (with Michael Jordan) and National University of Singapore (as Lee Kuan Yew Postdoctoral Fellow). I was a Lecturer then a Reader at the Gatsby Computational Neuroscience Unit, UCL, and a tutorial fellow at University College Oxford, prior to my current appointment. I am interested in the statistical and computational foundations of intelligence, and works on scalable machine learning, probabilistic models, Bayesian nonparametrics and deep learning. I was programme co-chair of ICML 2017 and AISTATS 2010.

Arnaud Doucet (Oxford)

More from the Same Authors