Timezone: »
Imaging neuroscience links human behavior to aspects of brain biology in ever-increasing datasets. Existing neuroimaging methods typically perform either discovery of unknown neural structure or testing of neural structure associated with mental tasks. However, testing hypotheses on the neural correlates underlying larger sets of mental tasks necessitates adequate representations for the observations. We therefore propose to blend representation modelling and task classification into a unified statistical learning problem. A multinomial logistic regression is introduced that is constrained by factored coefficients and coupled with an autoencoder. We show that this approach yields more accurate and interpretable neural models of psychological tasks in a reference dataset, as well as better generalization to other datasets.
Author Information
Danilo Bzdok (INRIA)
Michael Eickenberg (Flatiron Institute)
Olivier Grisel (Inria)
Bertrand Thirion (INRIA)
Gael Varoquaux (Parietal Team, INRIA)
More from the Same Authors
-
2021 Spotlight: What’s a good imputation to predict with missing values? »
Marine Le Morvan · Julie Josse · Erwan Scornet · Gael Varoquaux -
2021 : AI as statistical methods for imperfect theories »
Gael Varoquaux -
2021 : Variable Importance on Medical Images and Socio-Demographic Data »
Ahmad CHAMMA · Denis A. Engemann · Bertrand Thirion -
2022 Poster: A Conditional Randomization Test for Sparse Logistic Regression in High-Dimension »
Binh T. Nguyen · Bertrand Thirion · Sylvain Arlot -
2022 Poster: Why do tree-based models still outperform deep learning on typical tabular data? »
Leo Grinsztajn · Edouard Oyallon · Gael Varoquaux -
2022 Poster: Aligning individual brains with fused unbalanced Gromov Wasserstein »
Alexis Thual · Quang Huy TRAN · Tatiana Zemskova · Nicolas Courty · Rémi Flamary · Stanislas Dehaene · Bertrand Thirion -
2021 : A finer mapping of convolutional neural network layers to the visual cortex »
Tom Dupre la Tour · Michael Lu · Michael Eickenberg · Jack Gallant -
2021 Poster: Shared Independent Component Analysis for Multi-Subject Neuroimaging »
Hugo Richard · Pierre Ablin · Bertrand Thirion · Alexandre Gramfort · Aapo Hyvarinen -
2021 Poster: What’s a good imputation to predict with missing values? »
Marine Le Morvan · Julie Josse · Erwan Scornet · Gael Varoquaux -
2020 Poster: Modeling Shared responses in Neuroimaging Studies through MultiView ICA »
Hugo Richard · Luigi Gresele · Aapo Hyvarinen · Bertrand Thirion · Alexandre Gramfort · Pierre Ablin -
2020 Spotlight: Modeling Shared responses in Neuroimaging Studies through MultiView ICA »
Hugo Richard · Luigi Gresele · Aapo Hyvarinen · Bertrand Thirion · Alexandre Gramfort · Pierre Ablin -
2020 Poster: NeuMiss networks: differentiable programming for supervised learning with missing values. »
Marine Le Morvan · Julie Josse · Thomas Moreau · Erwan Scornet · Gael Varoquaux -
2020 Oral: NeuMiss networks: differentiable programming for supervised learning with missing values. »
Marine Le Morvan · Julie Josse · Thomas Moreau · Erwan Scornet · Gael Varoquaux -
2020 Poster: Statistical control for spatio-temporal MEG/EEG source imaging with desparsified mutli-task Lasso »
Jerome-Alexis Chevalier · Joseph Salmon · Alexandre Gramfort · Bertrand Thirion -
2019 Poster: Comparing distributions: $\ell_1$ geometry improves kernel two-sample testing »
Meyer Scetbon · Gael Varoquaux -
2019 Spotlight: Comparing distributions: $\ell_1$ geometry improves kernel two-sample testing »
Meyer Scetbon · Gael Varoquaux -
2019 Poster: Manifold-regression to predict from MEG/EEG brain signals without source modeling »
David Sabbagh · Pierre Ablin · Gael Varoquaux · Alexandre Gramfort · Denis A. Engemann -
2017 : Scikit-learn & nilearn: Democratisation of machine learning for brain imaging (INRIA) »
Gael Varoquaux -
2017 : Invited Talk: "Tales from fMRI: Learning from limited labeled data" »
Gael Varoquaux -
2017 Poster: Learning Neural Representations of Human Cognition across Many fMRI Studies »
Arthur Mensch · Julien Mairal · Danilo Bzdok · Bertrand Thirion · Gael Varoquaux -
2016 Poster: Learning brain regions via large-scale online structured sparse dictionary learning »
Elvis DOHMATOB · Arthur Mensch · Gael Varoquaux · Bertrand Thirion -
2013 Poster: Mapping paradigm ontologies to and from the brain »
Yannick Schwartz · Bertrand Thirion · Gael Varoquaux -
2011 Workshop: Machine Learning and Interpretation in Neuroimaging (MLINI-2011) »
Melissa K Carroll · Guillermo Cecchi · Kai-min K Chang · Moritz Grosse-Wentrup · James Haxby · Georg Langs · Anna Korhonen · Bjoern Menze · Brian Murphy · Janaina Mourao-Miranda · Vittorio Murino · Francisco Pereira · Irina Rish · Mert Sabuncu · Irina Simanova · Bertrand Thirion -
2010 Poster: Brain covariance selection: better individual functional connectivity models using population prior »
Gaël Varoquaux · Alexandre Gramfort · Jean-Baptiste Poline · Bertrand Thirion -
2009 Poster: Discriminative Network Models of Schizophrenia »
Guillermo Cecchi · Irina Rish · Benjamin Thyreau · Bertrand Thirion · Marion Plaze · Jean-Luc Martinot · Marie Laure Paillere-Martinot · Jean-Baptiste Poline -
2009 Oral: Discriminative Network Models of Schizophrenia »
Guillermo Cecchi · Irina Rish · Benjamin Thyreau · Bertrand Thirion · Marion Plaze · Jean-Luc Martinot · Marie Laure Paillere-Martinot · Jean-Baptiste Poline