Timezone: »
We establish PAC learnability of influence functions for three common influence models, namely, the Linear Threshold (LT), Independent Cascade (IC) and Voter models, and present concrete sample complexity results in each case. Our results for the LT model are based on interesting connections with neural networks; those for the IC model are based an interpretation of the influence function as an expectation over random draw of a subgraph and use covering number arguments; and those for the Voter model are based on a reduction to linear regression. We show these results for the case in which the cascades are only partially observed and we do not see the time steps in which a node has been influenced. We also provide efficient polynomial time learning algorithms for a setting with full observation, i.e. where the cascades also contain the time steps in which nodes are influenced.
Author Information
Harikrishna Narasimhan (Harvard University)
David Parkes (Harvard University )
David C. Parkes is Gordon McKay Professor of Computer Science in the School of Engineering and Applied Sciences at Harvard University. He was the recipient of the NSF Career Award, the Alfred P. Sloan Fellowship, the Thouron Scholarship and the Harvard University Roslyn Abramson Award for Teaching. Parkes received his Ph.D. degree in Computer and Information Science from the University of Pennsylvania in 2001, and an M.Eng. (First class) in Engineering and Computing Science from Oxford University in 1995. At Harvard, Parkes leads the EconCS group and teaches classes in artificial intelligence, optimization, and topics at the intersection between computer science and economics. Parkes has served as Program Chair of ACM EC’07 and AAMAS’08 and General Chair of ACM EC’10, served on the editorial board of Journal of Artificial Intelligence Research, and currently serves as Editor of Games and Economic Behavior and on the boards of Journal of Autonomous Agents and Multi-agent Systems and INFORMS Journal of Computing. His research interests include computational mechanism design, electronic commerce, stochastic optimization, preference elicitation, market design, bounded rationality, computational social choice, networks and incentives, multi-agent systems, crowd-sourcing and social computing.
Yaron Singer (Harvard University)
More from the Same Authors
-
2021 : Deep Reinforcement Learning Explanation via Model Transforms »
Sarah Keren · Yoav Kolumbus · Jeffrey S Rosenschein · David Parkes · Mira Finkelstein -
2022 : Predictive Multiplicity in Probabilistic Classification »
Jamelle Watson-Daniels · David Parkes · Berk Ustun -
2022 : Predictive Multiplicity in Probabilistic Classification »
Jamelle Watson-Daniels · David Parkes · Berk Ustun -
2022 : Learning to Mitigate AI Collusion on E-Commerce Platforms »
Eric Mibuari · Gianluca Brero · David Parkes · Nicolas Lepore -
2022 : Meta-RL for Multi-Agent RL: Learning to Adapt to Evolving Agents »
Matthias Gerstgrasser · David Parkes -
2022 Spotlight: Lightning Talks 5A-2 »
Qiang LI · Zhiwei Xu · Jiaqi Yang · Thai Hung Le · Haoxuan Qu · Yang Li · Artyom Sorokin · Peirong Zhang · Mira Finkelstein · Nitsan levy · Chung-Yiu Yau · dapeng li · Thommen Karimpanal George · De-Chuan Zhan · Nazar Buzun · Jiajia Jiang · Li Xu · Yichuan Mo · Yujun Cai · Yuliang Liu · Leonid Pugachev · Bin Zhang · Lucy Liu · Hoi-To Wai · Liangliang Shi · Majid Abdolshah · Yoav Kolumbus · Lin Geng Foo · Junchi Yan · Mikhail Burtsev · Lianwen Jin · Yuan Zhan · Dung Nguyen · David Parkes · Yunpeng Baiia · Jun Liu · Kien Do · Guoliang Fan · Jeffrey S Rosenschein · Sunil Gupta · Sarah Keren · Svetha Venkatesh -
2022 Spotlight: Explainable Reinforcement Learning via Model Transforms »
Mira Finkelstein · Nitsan levy · Lucy Liu · Yoav Kolumbus · David Parkes · Jeffrey S Rosenschein · Sarah Keren -
2022 Poster: Explainable Reinforcement Learning via Model Transforms »
Mira Finkelstein · Nitsan levy · Lucy Liu · Yoav Kolumbus · David Parkes · Jeffrey S Rosenschein · Sarah Keren -
2022 Poster: Learning to Mitigate AI Collusion on Economic Platforms »
Gianluca Brero · Eric Mibuari · Nicolas Lepore · David Parkes -
2021 Workshop: Learning in Presence of Strategic Behavior »
Omer Ben-Porat · Nika Haghtalab · Annie Liang · Yishay Mansour · David Parkes -
2020 Workshop: Machine Learning for Economic Policy »
Stephan Zheng · Alexander Trott · Annie Liang · Jamie Morgenstern · David Parkes · Nika Haghtalab -
2020 Poster: From Predictions to Decisions: Using Lookahead Regularization »
Nir Rosenfeld · Anna Hilgard · Sai Srivatsa Ravindranath · David Parkes -
2020 Poster: The Adaptive Complexity of Maximizing a Gross Substitutes Valuation »
Ron Kupfer · Sharon Qian · Eric Balkanski · Yaron Singer -
2020 Poster: An Optimal Elimination Algorithm for Learning a Best Arm »
Avinatan Hassidim · Ron Kupfer · Yaron Singer -
2020 Spotlight: An Optimal Elimination Algorithm for Learning a Best Arm »
Avinatan Hassidim · Ron Kupfer · Yaron Singer -
2020 Spotlight: The Adaptive Complexity of Maximizing a Gross Substitutes Valuation »
Ron Kupfer · Sharon Qian · Eric Balkanski · Yaron Singer -
2020 Poster: Investigating Gender Bias in Language Models Using Causal Mediation Analysis »
Jesse Vig · Sebastian Gehrmann · Yonatan Belinkov · Sharon Qian · Daniel Nevo · Yaron Singer · Stuart Shieber -
2020 Spotlight: Investigating Gender Bias in Language Models Using Causal Mediation Analysis »
Jesse Vig · Sebastian Gehrmann · Yonatan Belinkov · Sharon Qian · Daniel Nevo · Yaron Singer · Stuart Shieber -
2019 Poster: Finding Friend and Foe in Multi-Agent Games »
Jack Serrino · Max Kleiman-Weiner · David Parkes · Josh Tenenbaum -
2019 Spotlight: Finding Friend and Foe in Multi-Agent Games »
Jack Serrino · Max Kleiman-Weiner · David Parkes · Josh Tenenbaum -
2019 Poster: Fast Parallel Algorithms for Statistical Subset Selection Problems »
Sharon Qian · Yaron Singer -
2018 Poster: Optimization for Approximate Submodularity »
Yaron Singer · Avinatan Hassidim -
2018 Poster: Non-monotone Submodular Maximization in Exponentially Fewer Iterations »
Eric Balkanski · Adam Breuer · Yaron Singer -
2017 : Optimal Economic Design through Deep Learning »
David Parkes -
2017 Workshop: Discrete Structures in Machine Learning »
Yaron Singer · Jeff A Bilmes · Andreas Krause · Stefanie Jegelka · Amin Karbasi -
2017 Poster: Minimizing a Submodular Function from Samples »
Eric Balkanski · Yaron Singer -
2017 Poster: Multi-View Decision Processes: The Helper-AI Problem »
Christos Dimitrakakis · David Parkes · Goran Radanovic · Paul Tylkin -
2017 Poster: Robust Optimization for Non-Convex Objectives »
Robert S Chen · Brendan Lucier · Yaron Singer · Vasilis Syrgkanis -
2017 Oral: Robust Optimization for Non-Convex Objectives »
Robert S Chen · Brendan Lucier · Yaron Singer · Vasilis Syrgkanis -
2017 Poster: The Importance of Communities for Learning to Influence »
Eric Balkanski · Nicole Immorlica · Yaron Singer -
2016 Poster: Long-term Causal Effects via Behavioral Game Theory »
Panagiotis Toulis · David Parkes -
2016 Poster: Maximization of Approximately Submodular Functions »
Thibaut Horel · Yaron Singer -
2016 Poster: The Power of Optimization from Samples »
Eric Balkanski · Aviad Rubinstein · Yaron Singer -
2015 Poster: Information-theoretic lower bounds for convex optimization with erroneous oracles »
Yaron Singer · Jan Vondrak -
2015 Spotlight: Information-theoretic lower bounds for convex optimization with erroneous oracles »
Yaron Singer · Jan Vondrak -
2014 Workshop: NIPS’14 Workshop on Crowdsourcing and Machine Learning »
David Parkes · Denny Zhou · Chien-Ju Ho · Nihar Bhadresh Shah · Adish Singla · Jared Heyman · Edwin Simpson · Andreas Krause · Rafael Frongillo · Jennifer Wortman Vaughan · Panagiotis Papadimitriou · Damien Peters -
2014 Workshop: Analysis of Rank Data: Confluence of Social Choice, Operations Research, and Machine Learning »
Shivani Agarwal · Hossein Azari Soufiani · Guy Bresler · Sewoong Oh · David Parkes · Arun Rajkumar · Devavrat Shah -
2014 Workshop: Discrete Optimization in Machine Learning »
Jeffrey A Bilmes · Andreas Krause · Stefanie Jegelka · S Thomas McCormick · Sebastian Nowozin · Yaron Singer · Dhruv Batra · Volkan Cevher -
2014 Workshop: NIPS Workshop on Transactional Machine Learning and E-Commerce »
David Parkes · David H Wolpert · Jennifer Wortman Vaughan · Jacob D Abernethy · Amos Storkey · Mark Reid · Ping Jin · Nihar Bhadresh Shah · Mehryar Mohri · Luis E Ortiz · Robin Hanson · Aaron Roth · Satyen Kale · Sebastien Lahaie -
2014 Poster: A Statistical Decision-Theoretic Framework for Social Choice »
Hossein Azari Soufiani · David Parkes · Lirong Xia -
2014 Oral: A Statistical Decision-Theoretic Framework for Social Choice »
Hossein Azari Soufiani · David Parkes · Lirong Xia -
2013 Poster: Generalized Random Utility Models with Multiple Types »
Hossein Azari Soufiani · Hansheng Diao · Zhenyu Lai · David Parkes -
2013 Poster: Contrastive Learning Using Spectral Methods »
James Y Zou · Daniel Hsu · David Parkes · Ryan Adams -
2013 Poster: Generalized Method-of-Moments for Rank Aggregation »
Hossein Azari Soufiani · William Z Chen · David Parkes · Lirong Xia -
2010 Invited Talk: The Interplay of Machine Learning and Mechanism Design »
David Parkes