Timezone: »

 
Poster
Structured Estimation with Atomic Norms: General Bounds and Applications
Sheng Chen · Arindam Banerjee

Tue Dec 08 04:00 PM -- 08:59 PM (PST) @ 210 C #100

For structured estimation problems with atomic norms, recent advances in the literature express sample complexity and estimation error bounds in terms of certain geometric measures, in particular Gaussian width of the unit norm ball, Gaussian width of a spherical cap induced by a tangent cone, and a restricted norm compatibility constant. However, given an atomic norm, bounding these geometric measures can be difficult. In this paper, we present general upper bounds for such geometric measures, which only require simple information of the atomic norm under consideration, and we establish tightness of these bounds by providing the corresponding lower bounds. We show applications of our analysis to certain atomic norms, especially k-support norm, for which existing result is incomplete.

Author Information

Sheng Chen (University of Minnesota)
Arindam Banerjee (University of Minnesota)

Arindam Banerjee is a Professor at the Department of Computer & Engineering and a Resident Fellow at the Institute on the Environment at the University of Minnesota, Twin Cities. His research interests are in machine learning, data mining, and applications in complex real-world problems in different areas including climate science, ecology, recommendation systems, text analysis, and finance. He has won several awards, including the NSF CAREER award (2010), the IBM Faculty Award (2013), and six best paper awards in top-tier conferences.

More from the Same Authors