Timezone: »
Poster
Bayesian Optimization with Exponential Convergence
Kenji Kawaguchi · Leslie Kaelbling · Tomás Lozano-Pérez
This paper presents a Bayesian optimization method with exponential convergence without the need of auxiliary optimization and without the delta-cover sampling. Most Bayesian optimization methods require auxiliary optimization: an additional non-convex global optimization problem, which can be time-consuming and hard to implement in practice. Also, the existing Bayesian optimization method with exponential convergence requires access to the delta-cover sampling, which was considered to be impractical. Our approach eliminates both requirements and achieves an exponential convergence rate.
Author Information
Kenji Kawaguchi (MIT)
Leslie Kaelbling (MIT)
Tomás Lozano-Pérez (MIT)
More from the Same Authors
-
2020 : Robotic gripper design with Evolutionary Strategies and Graph Element Networks »
Ferran Alet · Maria Bauza · Adarsh K Jeewajee · Max Thomsen · Alberto Rodriguez · Leslie Kaelbling · Tomás Lozano-Pérez -
2021 : Catastrophic Failures of Neural Active Learning on Heteroskedastic Distributions »
Savya Khosla · Alex Lamb · Jordan Ash · Cyril Zhang · Kenji Kawaguchi -
2021 : Noether Networks: Meta-Learning Useful Conserved Quantities »
Ferran Alet · Dylan Doblar · Allan Zhou · Josh Tenenbaum · Kenji Kawaguchi · Chelsea Finn -
2022 : Solving PDDL Planning Problems with Pretrained Large Language Models »
Tom Silver · Varun Hariprasad · Reece Shuttleworth · Nishanth Kumar · Tomás Lozano-Pérez · Leslie Kaelbling -
2022 Poster: PDSketch: Integrated Domain Programming, Learning, and Planning »
Jiayuan Mao · Tomás Lozano-Pérez · Josh Tenenbaum · Leslie Kaelbling -
2021 Poster: Adversarial Training Helps Transfer Learning via Better Representations »
Zhun Deng · Linjun Zhang · Kailas Vodrahalli · Kenji Kawaguchi · James Zou -
2021 Poster: Understanding End-to-End Model-Based Reinforcement Learning Methods as Implicit Parameterization »
Clement Gehring · Kenji Kawaguchi · Jiaoyang Huang · Leslie Kaelbling -
2021 Poster: EIGNN: Efficient Infinite-Depth Graph Neural Networks »
Juncheng Liu · Kenji Kawaguchi · Bryan Hooi · Yiwei Wang · Xiaokui Xiao -
2021 Poster: Noether Networks: meta-learning useful conserved quantities »
Ferran Alet · Dylan Doblar · Allan Zhou · Josh Tenenbaum · Kenji Kawaguchi · Chelsea Finn -
2021 Poster: Tailoring: encoding inductive biases by optimizing unsupervised objectives at prediction time »
Ferran Alet · Maria Bauza · Kenji Kawaguchi · Nurullah Giray Kuru · Tomás Lozano-Pérez · Leslie Kaelbling -
2021 Poster: Discrete-Valued Neural Communication »
Dianbo Liu · Alex Lamb · Kenji Kawaguchi · Anirudh Goyal · Chen Sun · Michael Mozer · Yoshua Bengio -
2020 Poster: Adversarially-learned Inference via an Ensemble of Discrete Undirected Graphical Models »
Adarsh Keshav Jeewajee · Leslie Kaelbling -
2020 : Doing for our robots what nature did for us »
Leslie Kaelbling -
2019 Poster: Neural Relational Inference with Fast Modular Meta-learning »
Ferran Alet · Erica Weng · Tomás Lozano-Pérez · Leslie Kaelbling -
2018 : Discussion Panel: Ryan Adams, Nicolas Heess, Leslie Kaelbling, Shie Mannor, Emo Todorov (moderator: Roy Fox) »
Ryan Adams · Nicolas Heess · Leslie Kaelbling · Shie Mannor · Emo Todorov · Roy Fox -
2018 : On the Value of Knowing What You Don't Know: Learning to Sample and Sampling to Learn for Robot Planning (Leslie Kaelbling) »
Leslie Kaelbling -
2018 : Leslie Kaelbling »
Leslie Kaelbling -
2018 Workshop: Infer to Control: Probabilistic Reinforcement Learning and Structured Control »
Leslie Kaelbling · Martin Riedmiller · Marc Toussaint · Igor Mordatch · Roy Fox · Tuomas Haarnoja -
2018 : Talk 8: Leslie Kaelbling - Learning models of very large hybrid domains »
Leslie Kaelbling -
2018 Poster: Regret bounds for meta Bayesian optimization with an unknown Gaussian process prior »
Zi Wang · Beomjoon Kim · Leslie Kaelbling -
2018 Spotlight: Regret bounds for meta Bayesian optimization with an unknown Gaussian process prior »
Zi Wang · Beomjoon Kim · Leslie Kaelbling -
2016 Poster: Deep Learning without Poor Local Minima »
Kenji Kawaguchi -
2016 Oral: Deep Learning without Poor Local Minima »
Kenji Kawaguchi -
2008 Poster: Multi-Agent Filtering with Infinitely Nested Beliefs »
Luke Zettlemoyer · Brian Milch · Leslie Kaelbling -
2008 Spotlight: Multi-Agent Filtering with Infinitely Nested Beliefs »
Luke Zettlemoyer · Brian Milch · Leslie Kaelbling -
2007 Workshop: The Grammar of Vision: Probabilistic Grammar-Based Models for Visual Scene Understanding and Object Categorization »
Virginia Savova · Josh Tenenbaum · Leslie Kaelbling · Alan Yuille