Timezone: »
We propose a method for combining two sources of astronomical data, spectroscopy and photometry, that carry information about sources of light (e.g., stars, galaxies, and quasars) at extremely different spectral resolutions. Our model treats the spectral energy distribution (SED) of the radiation from a source as a latent variable that jointly explains both photometric and spectroscopic observations. We place a flexible, nonparametric prior over the SED of a light source that admits a physically interpretable decomposition, and allows us to tractably perform inference. We use our model to predict the distribution of the redshift of a quasar from five-band (low spectral resolution) photometric data, the so called ``photo-z'' problem. Our method shows that tools from machine learning and Bayesian statistics allow us to leverage multiple resolutions of information to make accurate predictions with well-characterized uncertainties.
Author Information
Andrew Miller (Harvard)
Albert Wu (Harvard)
Jeffrey Regier (UC Berkeley Statistics)
Jon McAuliffe (UC Berkeley)
Dustin Lang
Mr. Prabhat (LBL/NERSC)
David Schlegel
Ryan Adams (Harvard)
More from the Same Authors
-
2021 Spotlight: Slice Sampling Reparameterization Gradients »
David Zoltowski · Diana Cai · Ryan Adams -
2021 Spotlight: Amortized Synthesis of Constrained Configurations Using a Differentiable Surrogate »
Xingyuan Sun · Tianju Xue · Szymon Rusinkiewicz · Ryan Adams -
2021 : ProBF: Probabilistic Safety Certificates with Barrier Functions »
Sulin Liu · Athindran Ramesh Kumar · Jaime Fisac · Ryan Adams · Peter J. Ramadge -
2021 : Reading the Road: Leveraging Meta-Learning to Learn Other Driver Behavior »
Anat Kleiman · Ryan Adams -
2021 : Learning Invariant Representations with Missing Data »
Mark Goldstein · Adriel Saporta · Aahlad Puli · Rajesh Ranganath · Andrew Miller -
2022 : A code superoptimizer through neural Monte-Carlo tree search »
Wenda Zhou · Olga Solodova · Ryan Adams -
2022 : A code superoptimizer through neural Monte-Carlo tree search »
Wenda Zhou · Olga Solodova · Ryan Adams -
2022 Poster: Multi-fidelity Monte Carlo: a pseudo-marginal approach »
Diana Cai · Ryan Adams -
2021 : Randomized Automatic Differentiation - Ryan Adams - Princeton University »
Ryan Adams -
2021 Workshop: Machine Learning and the Physical Sciences »
Anima Anandkumar · Kyle Cranmer · Mr. Prabhat · Lenka Zdeborová · Atilim Gunes Baydin · Juan Carrasquilla · Emine Kucukbenli · Gilles Louppe · Benjamin Nachman · Brian Nord · Savannah Thais -
2021 Poster: Slice Sampling Reparameterization Gradients »
David Zoltowski · Diana Cai · Ryan Adams -
2021 Poster: Amortized Synthesis of Constrained Configurations Using a Differentiable Surrogate »
Xingyuan Sun · Tianju Xue · Szymon Rusinkiewicz · Ryan Adams -
2021 Poster: Why Generalization in RL is Difficult: Epistemic POMDPs and Implicit Partial Observability »
Dibya Ghosh · Jad Rahme · Aviral Kumar · Amy Zhang · Ryan Adams · Sergey Levine -
2020 : Orals 1.1: Randomized Automatic Differentiation »
Deniz Oktay · Nick McGreivy · Alex Beatson · Ryan Adams -
2020 Workshop: Machine Learning for Engineering Modeling, Simulation and Design »
Alex Beatson · Priya Donti · Amira Abdel-Rahman · Stephan Hoyer · Rose Yu · J. Zico Kolter · Ryan Adams -
2020 Workshop: Machine Learning and the Physical Sciences »
Anima Anandkumar · Kyle Cranmer · Shirley Ho · Mr. Prabhat · Lenka Zdeborová · Atilim Gunes Baydin · Juan Carrasquilla · Adji Bousso Dieng · Karthik Kashinath · Gilles Louppe · Brian Nord · Michela Paganini · Savannah Thais -
2020 Poster: On Warm-Starting Neural Network Training »
Jordan Ash · Ryan Adams -
2020 Poster: Task-Agnostic Amortized Inference of Gaussian Process Hyperparameters »
Sulin Liu · Xingyuan Sun · Peter J. Ramadge · Ryan Adams -
2020 Poster: Learning Composable Energy Surrogates for PDE Order Reduction »
Alex Beatson · Jordan Ash · Geoffrey Roeder · Tianju Xue · Ryan Adams -
2020 Oral: Learning Composable Energy Surrogates for PDE Order Reduction »
Alex Beatson · Jordan Ash · Geoffrey Roeder · Tianju Xue · Ryan Adams -
2019 : Opening Remarks »
Atilim Gunes Baydin · Juan Carrasquilla · Shirley Ho · Karthik Kashinath · Michela Paganini · Savannah Thais · Anima Anandkumar · Kyle Cranmer · Roger Melko · Mr. Prabhat · Frank Wood -
2019 Workshop: Machine Learning and the Physical Sciences »
Atilim Gunes Baydin · Juan Carrasquilla · Shirley Ho · Karthik Kashinath · Michela Paganini · Savannah Thais · Anima Anandkumar · Kyle Cranmer · Roger Melko · Mr. Prabhat · Frank Wood -
2019 Poster: SpArSe: Sparse Architecture Search for CNNs on Resource-Constrained Microcontrollers »
Igor Fedorov · Ryan Adams · Matthew Mattina · Paul Whatmough -
2019 Poster: Discrete Object Generation with Reversible Inductive Construction »
Ari Seff · Wenda Zhou · Farhan Damani · Abigail Doyle · Ryan Adams -
2019 Poster: Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model »
Atilim Gunes Baydin · Lei Shao · Wahid Bhimji · Lukas Heinrich · Saeid Naderiparizi · Andreas Munk · Jialin Liu · Bradley Gram-Hansen · Gilles Louppe · Lawrence Meadows · Philip Torr · Victor Lee · Kyle Cranmer · Mr. Prabhat · Frank Wood -
2018 : Discussion Panel: Ryan Adams, Nicolas Heess, Leslie Kaelbling, Shie Mannor, Emo Todorov (moderator: Roy Fox) »
Ryan Adams · Nicolas Heess · Leslie Kaelbling · Shie Mannor · Emo Todorov · Roy Fox -
2018 : Inference and Control of Learning Behavior in Rodents (Ryan Adams) »
Ryan Adams -
2018 : Poster Session I »
Aniruddh Raghu · Daniel Jarrett · Kathleen Lewis · Elias Chaibub Neto · Nicholas Mastronarde · Shazia Akbar · Chun-Hung Chao · Henghui Zhu · Seth Stafford · Luna Zhang · Jen-Tang Lu · Changhee Lee · Adityanarayanan Radhakrishnan · Fabian Falck · Liyue Shen · Daniel Neil · Yusuf Roohani · Aparna Balagopalan · Brett Marinelli · Hagai Rossman · Sven Giesselbach · Jose Javier Gonzalez Ortiz · Edward De Brouwer · Byung-Hoon Kim · Rafid Mahmood · Tzu Ming Hsu · Antonio Ribeiro · Rumi Chunara · Agni Orfanoudaki · Kristen Severson · Mingjie Mai · Sonali Parbhoo · Albert Haque · Viraj Prabhu · Di Jin · Alena Harley · Geoffroy Dubourg-Felonneau · Xiaodan Hu · Maithra Raghu · Jonathan Warrell · Nelson Johansen · Wenyuan Li · Marko Järvenpää · Satya Narayan Shukla · Sarah Tan · Vincent Fortuin · Beau Norgeot · Yi-Te Hsu · Joel H Saltz · Veronica Tozzo · Andrew Miller · Guillaume Ausset · Azin Asgarian · Francesco Paolo Casale · Antoine Neuraz · Bhanu Pratap Singh Rawat · Turgay Ayer · Xinyu Li · Mehul Motani · Nathaniel Braman · Laetitia M Shao · Adrian Dalca · Hyunkwang Lee · Emma Pierson · Sandesh Ghimire · Yuji Kawai · Owen Lahav · Anna Goldenberg · Denny Wu · Pavitra Krishnaswamy · Colin Pawlowski · Arijit Ukil · Yuhui Zhang -
2018 Poster: A Bayesian Nonparametric View on Count-Min Sketch »
Diana Cai · Michael Mitzenmacher · Ryan Adams -
2017 : Contributed talk: Taylor Residual Estimators via Automatic Differentiation »
Andrew Miller -
2017 : Poster Session »
Shunsuke Horii · Heejin Jeong · Tobias Schwedes · Qing He · Ben Calderhead · Ertunc Erdil · Jaan Altosaar · Patrick Muchmore · Rajiv Khanna · Ian Gemp · Pengfei Zhang · Yuan Zhou · Chris Cremer · Maria DeYoreo · Alexander Terenin · Brendan McVeigh · Rachit Singh · Yaodong Yang · Erik Bodin · Trefor Evans · Henry Chai · Shandian Zhe · Jeffrey Ling · Vincent ADAM · Lars Maaløe · Andrew Miller · Ari Pakman · Josip Djolonga · Hong Ge -
2017 : Coffee break and Poster Session I »
Nishith Khandwala · Steve Gallant · Gregory Way · Aniruddh Raghu · Li Shen · Aydan Gasimova · Alican Bozkurt · William Boag · Daniel Lopez-Martinez · Ulrich Bodenhofer · Samaneh Nasiri GhoshehBolagh · Michelle Guo · Christoph Kurz · Kirubin Pillay · Kimis Perros · George H Chen · Alexandre Yahi · Madhumita Sushil · Sanjay Purushotham · Elena Tutubalina · Tejpal Virdi · Marc-Andre Schulz · Samuel Weisenthal · Bharat Srikishan · Petar Veličković · Kartik Ahuja · Andrew Miller · Erin Craig · Disi Ji · Filip Dabek · Chloé Pou-Prom · Hejia Zhang · Janani Kalyanam · Wei-Hung Weng · Harish Bhat · Hugh Chen · Simon Kohl · Mingwu Gao · Tingting Zhu · Ming-Zher Poh · Iñigo Urteaga · Antoine Honoré · Alessandro De Palma · Maruan Al-Shedivat · Pranav Rajpurkar · Matthew McDermott · Vincent Chen · Yanan Sui · Yun-Geun Lee · Li-Fang Cheng · Chen Fang · Sibt ul Hussain · Cesare Furlanello · Zeev Waks · Hiba Chougrad · Hedvig Kjellstrom · Finale Doshi-Velez · Wolfgang Fruehwirt · Yanqing Zhang · Lily Hu · Junfang Chen · Sunho Park · Gatis Mikelsons · Jumana Dakka · Stephanie Hyland · yann chevaleyre · Hyunwoo Lee · Xavier Giro-i-Nieto · David Kale · Michael Hughes · Gabriel Erion · Rishab Mehra · William Zame · Stojan Trajanovski · Prithwish Chakraborty · Kelly Peterson · Muktabh Mayank Srivastava · Amy Jin · Heliodoro Tejeda Lemus · Priyadip Ray · Tamas Madl · Joseph Futoma · Enhao Gong · Syed Rameel Ahmad · Eric Lei · Ferdinand Legros -
2017 Workshop: Deep Learning for Physical Sciences »
Atilim Gunes Baydin · Mr. Prabhat · Kyle Cranmer · Frank Wood -
2017 Poster: Fast Black-box Variational Inference through Stochastic Trust-Region Optimization »
Jeffrey Regier · Michael Jordan · Jon McAuliffe -
2017 Poster: ExtremeWeather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events »
Evan Racah · Christopher Beckham · Tegan Maharaj · Samira Ebrahimi Kahou · Mr. Prabhat · Chris Pal -
2017 Poster: PASS-GLM: polynomial approximate sufficient statistics for scalable Bayesian GLM inference »
Jonathan Huggins · Ryan Adams · Tamara Broderick -
2017 Spotlight: PASS-GLM: polynomial approximate sufficient statistics for scalable Bayesian GLM inference »
Jonathan Huggins · Ryan Adams · Tamara Broderick -
2017 Spotlight: Fast Black-box Variational Inference through Stochastic Trust-Region Optimization »
Jeffrey Regier · Michael Jordan · Jon McAuliffe -
2017 Poster: Reducing Reparameterization Gradient Variance »
Andrew Miller · Nick Foti · Alexander D'Amour · Ryan Adams -
2017 Poster: Union of Intersections (UoI) for Interpretable Data Driven Discovery and Prediction »
Kristofer Bouchard · Alejandro Bujan · Farbod Roosta-Khorasani · Shashanka Ubaru · Mr. Prabhat · Antoine Snijders · Jian-Hua Mao · Edward Chang · Michael W Mahoney · Sharmodeep Bhattacharya -
2016 : Panel Discussion »
Shakir Mohamed · David Blei · Ryan Adams · José Miguel Hernández-Lobato · Ian Goodfellow · Yarin Gal -
2016 : A Tribute to David MacKay »
Ryan Adams -
2016 Workshop: Bayesian Optimization: Black-box Optimization and Beyond »
Roberto Calandra · Bobak Shahriari · Javier Gonzalez · Frank Hutter · Ryan Adams -
2016 : Leveraging Structure in Bayesian Optimization »
Ryan Adams -
2016 Poster: Bayesian latent structure discovery from multi-neuron recordings »
Scott Linderman · Ryan Adams · Jonathan Pillow -
2016 Poster: Composing graphical models with neural networks for structured representations and fast inference »
Matthew Johnson · David Duvenaud · Alex Wiltschko · Ryan Adams · Sandeep R Datta -
2015 Workshop: Bayesian Optimization: Scalability and Flexibility »
Bobak Shahriari · Ryan Adams · Nando de Freitas · Amar Shah · Roberto Calandra -
2015 Workshop: Statistical Methods for Understanding Neural Systems »
Alyson Fletcher · Jakob H Macke · Ryan Adams · Jascha Sohl-Dickstein -
2015 Poster: Convolutional Networks on Graphs for Learning Molecular Fingerprints »
David Duvenaud · Dougal Maclaurin · Jorge Iparraguirre · Rafael Bombarell · Timothy Hirzel · Alan Aspuru-Guzik · Ryan Adams -
2015 Poster: Spectral Representations for Convolutional Neural Networks »
Oren Rippel · Jasper Snoek · Ryan Adams -
2015 Poster: Dependent Multinomial Models Made Easy: Stick-Breaking with the Polya-gamma Augmentation »
Scott Linderman · Matthew Johnson · Ryan Adams -
2014 Workshop: Bayesian Optimization in Academia and Industry »
Zoubin Ghahramani · Ryan Adams · Matthew Hoffman · Kevin Swersky · Jasper Snoek -
2014 Poster: A framework for studying synaptic plasticity with neural spike train data »
Scott Linderman · Christopher H Stock · Ryan Adams -
2013 Workshop: Bayesian Optimization in Theory and Practice »
Matthew Hoffman · Jasper Snoek · Nando de Freitas · Michael A Osborne · Ryan Adams · Sebastien Bubeck · Philipp Hennig · Remi Munos · Andreas Krause -
2013 Poster: Multi-Task Bayesian Optimization »
Kevin Swersky · Jasper Snoek · Ryan Adams -
2013 Poster: Message Passing Inference with Chemical Reaction Networks »
Nils E Napp · Ryan Adams -
2013 Oral: Message Passing Inference with Chemical Reaction Networks »
Nils E Napp · Ryan Adams -
2013 Poster: A Determinantal Point Process Latent Variable Model for Inhibition in Neural Spiking Data »
Jasper Snoek · Richard Zemel · Ryan Adams -
2013 Poster: Contrastive Learning Using Spectral Methods »
James Y Zou · Daniel Hsu · David Parkes · Ryan Adams -
2012 Poster: Bayesian n-Choose-k Models for Classification and Ranking »
Kevin Swersky · Danny Tarlow · Richard Zemel · Ryan Adams · Brendan J Frey -
2012 Poster: Priors for Diversity in Generative Latent Variable Models »
James Y Zou · Ryan Adams -
2012 Poster: Cardinality Restricted Boltzmann Machines »
Kevin Swersky · Danny Tarlow · Ilya Sutskever · Richard Zemel · Russ Salakhutdinov · Ryan Adams -
2012 Poster: Practical Bayesian Optimization of Machine Learning Algorithms »
Jasper Snoek · Hugo Larochelle · Ryan Adams -
2011 Workshop: Bayesian Nonparametric Methods: Hope or Hype? »
Emily Fox · Ryan Adams -
2010 Workshop: Transfer Learning Via Rich Generative Models. »
Russ Salakhutdinov · Ryan Adams · Josh Tenenbaum · Zoubin Ghahramani · Tom Griffiths -
2010 Workshop: Monte Carlo Methods for Bayesian Inference in Modern Day Applications »
Ryan Adams · Mark A Girolami · Iain Murray -
2010 Oral: Tree-Structured Stick Breaking for Hierarchical Data »
Ryan Adams · Zoubin Ghahramani · Michael Jordan -
2010 Oral: Slice sampling covariance hyperparameters of latent Gaussian models »
Iain Murray · Ryan Adams -
2010 Poster: Tree-Structured Stick Breaking for Hierarchical Data »
Ryan Adams · Zoubin Ghahramani · Michael Jordan -
2010 Poster: Slice sampling covariance hyperparameters of latent Gaussian models »
Iain Murray · Ryan Adams -
2008 Poster: The Gaussian Process Density Sampler »
Ryan Adams · Iain Murray · David MacKay -
2008 Spotlight: The Gaussian Process Density Sampler »
Ryan Adams · Iain Murray · David MacKay