Timezone: »
Many neural circuits are composed of numerous distinct cell types that perform different operations on their inputs, and send their outputs to distinct targets. Therefore, a key step in understanding neural systems is to reliably distinguish cell types. An important example is the retina, for which present-day techniques for identifying cell types are accurate, but very labor-intensive. Here, we develop automated classifiers for functional identification of retinal ganglion cells, the output neurons of the retina, based solely on recorded voltage patterns on a large scale array. We use per-cell classifiers based on features extracted from electrophysiological images (spatiotemporal voltage waveforms) and interspike intervals (autocorrelations). These classifiers achieve high performance in distinguishing between the major ganglion cell classes of the primate retina, but fail in achieving the same accuracy in predicting cell polarities (ON vs. OFF). We then show how to use indicators of functional coupling within populations of ganglion cells (cross-correlation) to infer cell polarities with a matrix completion algorithm. This can result in accurate, fully automated methods for cell type classification.
Author Information
Emile Richard (Stanford University)
Georges A Goetz (Stanford University)
E.J. Chichilnisky (Stanford)
More from the Same Authors
-
2022 Poster: Maximum a posteriori natural scene reconstruction from retinal ganglion cells with deep denoiser priors »
Eric Wu · Nora Brackbill · Alexander Sher · Alan Litke · Eero Simoncelli · E.J. Chichilnisky -
2019 Poster: Efficient characterization of electrically evoked responses for neural interfaces »
Nishal Shah · Sasidhar Madugula · Pawel Hottowy · Alexander Sher · Alan Litke · Liam Paninski · E.J. Chichilnisky -
2017 Spotlight: Deep Networks for Decoding Natural Images from Retinal Signals »
Nikhil Parthasarathy · Eleanor Batty · William Falcon · Thomas Rutten · Mohit Rajpal · E.J. Chichilnisky · Liam Paninski -
2017 Poster: Neural Networks for Efficient Bayesian Decoding of Natural Images from Retinal Neurons »
Nikhil Parthasarathy · Eleanor Batty · William Falcon · Thomas Rutten · Mohit Rajpal · E.J. Chichilnisky · Liam Paninski -
2017 Poster: YASS: Yet Another Spike Sorter »
Jin Hyung Lee · David Carlson · Hooshmand Shokri Razaghi · Weichi Yao · Georges A Goetz · Espen Hagen · Eleanor Batty · E.J. Chichilnisky · Gaute T. Einevoll · Liam Paninski -
2014 Poster: A statistical model for tensor PCA »
Emile Richard · Andrea Montanari -
2014 Poster: Cone-Constrained Principal Component Analysis »
Yash Deshpande · Andrea Montanari · Emile Richard -
2014 Poster: Tight convex relaxations for sparse matrix factorization »
Emile Richard · Guillaume R Obozinski · Jean-Philippe Vert -
2014 Poster: Inferring synaptic conductances from spike trains with a biophysically inspired point process model »
Kenneth W Latimer · E.J. Chichilnisky · Fred Rieke · Jonathan W Pillow -
2012 Poster: Link Prediction in Graphs with Autoregressive Features »
Emile Richard · Stephane Gaiffas · Nicolas Vayatis -
2010 Poster: Link Discovery using Graph Feature Tracking »
Emile Richard · Nicolas Baskiotis · Theos Evgeniou · Nicolas Vayatis