Timezone: »
Poster
On the consistency theory of high dimensional variable screening
Xiangyu Wang · Chenlei Leng · David B Dunson
Variable screening is a fast dimension reduction technique for assisting high dimensional feature selection. As a preselection method, it selects a moderate size subset of candidate variables for further refining via feature selection to produce the final model. The performance of variable screening depends on both computational efficiency and the ability to dramatically reduce the number of variables without discarding the important ones. When the data dimension $p$ is substantially larger than the sample size $n$, variable screening becomes crucial as 1) Faster feature selection algorithms are needed; 2) Conditions guaranteeing selection consistency might fail to hold.This article studies a class of linear screening methods and establishes consistency theory for this special class. In particular, we prove the restricted diagonally dominant (RDD) condition is a necessary and sufficient condition for strong screening consistency. As concrete examples, we show two screening methods $SIS$ and $HOLP$ are both strong screening consistent (subject to additional constraints) with large probability if $n > O((\rho s + \sigma/\tau)^2\log p)$ under random designs. In addition, we relate the RDD condition to the irrepresentable condition, and highlight limitations of $SIS$.
Author Information
Xiangyu Wang (Duke University)
Chenlei Leng
David B Dunson (Duke University)
More from the Same Authors
-
2016 Poster: Towards Unifying Hamiltonian Monte Carlo and Slice Sampling »
Yizhe Zhang · Xiangyu Wang · Changyou Chen · Ricardo Henao · Kai Fan · Lawrence Carin -
2016 Poster: DECOrrelated feature space partitioning for distributed sparse regression »
Xiangyu Wang · David B Dunson · Chenlei Leng -
2015 Poster: Parallelizing MCMC with Random Partition Trees »
Xiangyu Wang · Fangjian Guo · Katherine Heller · David B Dunson -
2015 Poster: Probabilistic Curve Learning: Coulomb Repulsion and the Electrostatic Gaussian Process »
Ye Wang · David B Dunson -
2014 Poster: Median Selection Subset Aggregation for Parallel Inference »
Xiangyu Wang · Peichao Peng · David B Dunson -
2014 Oral: Median Selection Subset Aggregation for Parallel Inference »
Xiangyu Wang · Peichao Peng · David B Dunson -
2014 Poster: Convex Optimization Procedure for Clustering: Theoretical Revisit »
Changbo Zhu · Huan Xu · Chenlei Leng · Shuicheng Yan -
2013 Poster: Locally Adaptive Bayesian Multivariate Time Series »
Daniele Durante · Bruno Scarpa · David B Dunson -
2013 Poster: Provable Subspace Clustering: When LRR meets SSC »
Yu-Xiang Wang · Huan Xu · Chenlei Leng -
2013 Spotlight: Provable Subspace Clustering: When LRR meets SSC »
Yu-Xiang Wang · Huan Xu · Chenlei Leng -
2013 Poster: Multiscale Dictionary Learning for Estimating Conditional Distributions »
Francesca Petralia · Joshua T Vogelstein · David B Dunson -
2012 Poster: Multiresolution Gaussian Processes »
Emily Fox · David B Dunson -
2012 Poster: Repulsive Mixtures »
FRANCESCA PETRALIA · Vinayak Rao · David B Dunson -
2011 Poster: Generalized Beta Mixtures of Gaussians »
Artin Armagan · David B Dunson · Merlise Clyde -
2011 Poster: The Kernel Beta Process »
Lu Ren · Yingjian Wang · David B Dunson · Lawrence Carin -
2011 Spotlight: The Kernel Beta Process »
Lu Ren · Yingjian Wang · David B Dunson · Lawrence Carin -
2011 Poster: Hierarchical Topic Modeling for Analysis of Time-Evolving Personal Choices »
XianXing Zhang · David B Dunson · Lawrence Carin -
2010 Poster: Joint Analysis of Time-Evolving Binary Matrices and Associated Documents »
Eric X Wang · Dehong Liu · Jorge G Silva · David B Dunson · Lawrence Carin -
2009 Workshop: Nonparametric Bayes »
Dilan Gorur · Francois Caron · Yee Whye Teh · David B Dunson · Zoubin Ghahramani · Michael Jordan -
2009 Poster: A Bayesian Model for Simultaneous Image Clustering, Annotation and Object Segmentation »
Lan Du · Lu Ren · David B Dunson · Lawrence Carin