Timezone: »
Poster
Learning structured densities via infinite dimensional exponential families
Siqi Sun · Mladen Kolar · Jinbo Xu
Learning the structure of a probabilistic graphical models is a well studied problem in the machine learning community due to its importance in many applications. Current approaches are mainly focused on learning the structure under restrictive parametric assumptions, which limits the applicability of these methods. In this paper, we study the problem of estimating the structure of a probabilistic graphical model without assuming a particular parametric model. We consider probabilities that are members of an infinite dimensional exponential family, which is parametrized by a reproducing kernel Hilbert space (RKHS) H and its kernel $k$. One difficulty in learning nonparametric densities is evaluation of the normalizing constant. In order to avoid this issue, our procedure minimizes the penalized score matching objective. We show how to efficiently minimize the proposed objective using existing group lasso solvers. Furthermore, we prove that our procedure recovers the graph structure with high-probability under mild conditions. Simulation studies illustrate ability of our procedure to recover the true graph structure without the knowledge of the data generating process.
Author Information
Siqi Sun (TTIC)
Mladen Kolar (University of Chicago Booth School of Business)
Jinbo Xu (Toyota Technological Institute at Chicago)
More from the Same Authors
-
2022 : Adaptive Inexact Sequential Quadratic Programming via Iterative Randomized Sketching »
Ilgee Hong · Sen Na · Mladen Kolar -
2022 : Fully Stochastic Trust-Region Sequential Quadratic Programming for Equality-Constrained Optimization Problems »
Yuchen Fang · Sen Na · Mladen Kolar -
2022 : Trust-Region Sequential Quadratic Programming for Stochastic Optimization with Random Models: First-Order Stationarity »
Yuchen Fang · Sen Na · Mladen Kolar -
2022 Poster: A Nonconvex Framework for Structured Dynamic Covariance Recovery »
Katherine Tsai · Mladen Kolar · Sanmi Koyejo -
2020 Poster: Provably Efficient Neural Estimation of Structural Equation Models: An Adversarial Approach »
Luofeng Liao · You-Lin Chen · Zhuoran Yang · Bo Dai · Mladen Kolar · Zhaoran Wang -
2019 Poster: Direct Estimation of Differential Functional Graphical Models »
Boxin Zhao · Y. Samuel Wang · Mladen Kolar -
2019 Poster: Convergent Policy Optimization for Safe Reinforcement Learning »
Ming Yu · Zhuoran Yang · Mladen Kolar · Zhaoran Wang -
2018 Poster: Provable Gaussian Embedding with One Observation »
Ming Yu · Zhuoran Yang · Tuo Zhao · Mladen Kolar · Zhaoran Wang -
2017 Workshop: Advances in Modeling and Learning Interactions from Complex Data »
Gautam Dasarathy · Mladen Kolar · Richard Baraniuk -
2017 Poster: The Expxorcist: Nonparametric Graphical Models Via Conditional Exponential Densities »
Arun Suggala · Mladen Kolar · Pradeep Ravikumar -
2016 : Mladen Kolar. Post-Regularization Inference for Dynamic Nonparanormal Graphical Models. »
Mladen Kolar -
2016 Poster: Statistical Inference for Pairwise Graphical Models Using Score Matching »
Ming Yu · Mladen Kolar · Varun Gupta -
2014 Workshop: Modern Nonparametrics 3: Automating the Learning Pipeline »
Eric Xing · Mladen Kolar · Arthur Gretton · Samory Kpotufe · Han Liu · Zoltán Szabó · Alan Yuille · Andrew G Wilson · Ryan Tibshirani · Sasha Rakhlin · Damian Kozbur · Bharath Sriperumbudur · David Lopez-Paz · Kirthevasan Kandasamy · Francesco Orabona · Andreas Damianou · Wacha Bounliphone · Yanshuai Cao · Arijit Das · Yingzhen Yang · Giulia DeSalvo · Dmitry Storcheus · Roberto Valerio -
2013 Workshop: Modern Nonparametric Methods in Machine Learning »
Arthur Gretton · Mladen Kolar · Samory Kpotufe · John Lafferty · Han Liu · Bernhard Schölkopf · Alexander Smola · Rob Nowak · Mikhail Belkin · Lorenzo Rosasco · peter bickel · Yue Zhao -
2012 Workshop: Modern Nonparametric Methods in Machine Learning »
Sivaraman Balakrishnan · Arthur Gretton · Mladen Kolar · John Lafferty · Han Liu · Tong Zhang -
2011 Poster: Minimax Localization of Structural Information in Large Noisy Matrices »
Mladen Kolar · Sivaraman Balakrishnan · Alessandro Rinaldo · Aarti Singh -
2011 Spotlight: Minimax Localization of Structural Information in Large Noisy Matrices »
Mladen Kolar · Sivaraman Balakrishnan · Alessandro Rinaldo · Aarti Singh -
2009 Poster: Time-Varying Dynamic Bayesian Networks »
Le Song · Mladen Kolar · Eric Xing -
2009 Spotlight: Time-Varying Dynamic Bayesian Networks »
Le Song · Mladen Kolar · Eric Xing -
2009 Poster: Sparsistent Learning of Varying-coefficient Models with Structural Changes »
Mladen Kolar · Le Song · Eric Xing -
2009 Spotlight: Sparsistent Learning of Varying-coefficient Models with Structural Changes »
Mladen Kolar · Le Song · Eric Xing