Timezone: »
In personalized recommendation systems, it is important to predict preferences of a user on items that have not been seen by that user yet. Similarly, in revenue management, it is important to predict outcomes of comparisons among those items that have never been compared so far. The MultiNomial Logit model, a popular discrete choice model, captures the structure of the hidden preferences with a low-rank matrix. In order to predict the preferences, we want to learn the underlying model from noisy observations of the low-rank matrix, collected as revealed preferences in various forms of ordinal data. A natural approach to learn such a model is to solve a convex relaxation of nuclear norm minimization. We present the convex relaxation approach in two contexts of interest: collaborative ranking and bundled choice modeling. In both cases, we show that the convex relaxation is minimax optimal. We prove an upper bound on the resulting error with finite samples, and provide a matching information-theoretic lower bound.
Author Information
Sewoong Oh (UIUC)
Kiran Thekumparampil (UIUC)
Jiaming Xu
More from the Same Authors
-
2022 Poster: Bring Your Own Algorithm for Optimal Differentially Private Stochastic Minimax Optimization »
Liang Zhang · Kiran Thekumparampil · Sewoong Oh · Niao He -
2021 Poster: Statistically and Computationally Efficient Linear Meta-representation Learning »
Kiran Thekumparampil · Prateek Jain · Praneeth Netrapalli · Sewoong Oh -
2020 : Poster Session 3 (gather.town) »
Denny Wu · Chengrun Yang · Tolga Ergen · sanae lotfi · Charles Guille-Escuret · Boris Ginsburg · Hanbake Lyu · Cong Xie · David Newton · Debraj Basu · Yewen Wang · James Lucas · MAOJIA LI · Lijun Ding · Jose Javier Gonzalez Ortiz · Reyhane Askari Hemmat · Zhiqi Bu · Neal Lawton · Kiran Thekumparampil · Jiaming Liang · Lindon Roberts · Jingyi Zhu · Dongruo Zhou -
2020 Poster: Projection Efficient Subgradient Method and Optimal Nonsmooth Frank-Wolfe Method »
Kiran Thekumparampil · Prateek Jain · Praneeth Netrapalli · Sewoong Oh -
2020 Spotlight: Projection Efficient Subgradient Method and Optimal Nonsmooth Frank-Wolfe Method »
Kiran Thekumparampil · Prateek Jain · Praneeth Netrapalli · Sewoong Oh -
2019 Poster: Efficient Algorithms for Smooth Minimax Optimization »
Kiran Thekumparampil · Prateek Jain · Praneeth Netrapalli · Sewoong Oh -
2018 Poster: Robustness of conditional GANs to noisy labels »
Kiran Thekumparampil · Ashish Khetan · Zinan Lin · Sewoong Oh -
2018 Spotlight: Robustness of conditional GANs to noisy labels »
Kiran Thekumparampil · Ashish Khetan · Zinan Lin · Sewoong Oh -
2017 : New perspective from Blackwell's "comparisons of experiments" on generative adversarial networks »
Sewoong Oh -
2017 Poster: Optimal Sample Complexity of M-wise Data for Top-K Ranking »
Minje Jang · Sunghyun Kim · Changho Suh · Sewoong Oh -
2017 Poster: Estimating Mutual Information for Discrete-Continuous Mixtures »
Weihao Gao · Sreeram Kannan · Sewoong Oh · Pramod Viswanath -
2017 Poster: Matrix Norm Estimation from a Few Entries »
Ashish Khetan · Sewoong Oh -
2017 Spotlight: Estimating Mutual Information for Discrete-Continuous Mixtures »
Weihao Gao · Sreeram Kannan · Sewoong Oh · Pramod Viswanath -
2017 Spotlight: Matrix Norm Estimation from a Few Entries »
Ashish Khetan · Sewoong Oh -
2017 Poster: Discovering Potential Correlations via Hypercontractivity »
Hyeji Kim · Weihao Gao · Sreeram Kannan · Sewoong Oh · Pramod Viswanath -
2016 Poster: Breaking the Bandwidth Barrier: Geometrical Adaptive Entropy Estimation »
Weihao Gao · Sewoong Oh · Pramod Viswanath -
2016 Poster: Computational and Statistical Tradeoffs in Learning to Rank »
Ashish Khetan · Sewoong Oh -
2016 Poster: Achieving budget-optimality with adaptive schemes in crowdsourcing »
Ashish Khetan · Sewoong Oh -
2015 Workshop: Non-convex Optimization for Machine Learning: Theory and Practice »
Anima Anandkumar · Niranjan Uma Naresh · Kamalika Chaudhuri · Percy Liang · Sewoong Oh -
2015 Poster: Secure Multi-party Differential Privacy »
Peter Kairouz · Sewoong Oh · Pramod Viswanath -
2014 Workshop: Analysis of Rank Data: Confluence of Social Choice, Operations Research, and Machine Learning »
Shivani Agarwal · Hossein Azari Soufiani · Guy Bresler · Sewoong Oh · David Parkes · Arun Rajkumar · Devavrat Shah -
2014 Poster: Provable Tensor Factorization with Missing Data »
Prateek Jain · Sewoong Oh -
2014 Poster: Extremal Mechanisms for Local Differential Privacy »
Peter Kairouz · Sewoong Oh · Pramod Viswanath -
2014 Poster: Minimax-optimal Inference from Partial Rankings »
Bruce Hajek · Sewoong Oh · Jiaming Xu -
2014 Poster: Learning Mixed Multinomial Logit Model from Ordinal Data »
Sewoong Oh · Devavrat Shah -
2012 Poster: Iterative ranking from pair-wise comparisons »
Sahand N Negahban · Sewoong Oh · Devavrat Shah -
2012 Spotlight: Iterative ranking from pair-wise comparisons »
Sahand N Negahban · Sewoong Oh · Devavrat Shah -
2011 Poster: Iterative Learning for Reliable Crowdsourcing Systems »
David R Karger · Sewoong Oh · Devavrat Shah -
2011 Oral: Iterative Learning for Reliable Crowdsourcing Systems »
David R Karger · Sewoong Oh · Devavrat Shah -
2009 Poster: Matrix Completion from Noisy Entries »
Raghunandan Keshavan · Andrea Montanari · Sewoong Oh