Timezone: »
Learning of low dimensional structure in multidimensional data is a canonical problem in machine learning. One common approach is to suppose that the observed data are close to a lower-dimensional smooth manifold. There are a rich variety of manifold learning methods available, which allow mapping of data points to the manifold. However, there is a clear lack of probabilistic methods that allow learning of the manifold along with the generative distribution of the observed data. The best attempt is the Gaussian process latent variable model (GP-LVM), but identifiability issues lead to poor performance. We solve these issues by proposing a novel Coulomb repulsive process (Corp) for locations of points on the manifold, inspired by physical models of electrostatic interactions among particles. Combining this process with a GP prior for the mapping function yields a novel electrostatic GP (electroGP) process. Focusing on the simple case of a one-dimensional manifold, we develop efficient inference algorithms, and illustrate substantially improved performance in a variety of experiments including filling in missing frames in video.
Author Information
Ye Wang (Duke Univiersity)
David B Dunson (Duke University)
More from the Same Authors
-
2016 Poster: DECOrrelated feature space partitioning for distributed sparse regression »
Xiangyu Wang · David B Dunson · Chenlei Leng -
2015 Poster: Parallelizing MCMC with Random Partition Trees »
Xiangyu Wang · Fangjian Guo · Katherine Heller · David B Dunson -
2015 Poster: On the consistency theory of high dimensional variable screening »
Xiangyu Wang · Chenlei Leng · David B Dunson -
2014 Poster: Median Selection Subset Aggregation for Parallel Inference »
Xiangyu Wang · Peichao Peng · David B Dunson -
2014 Oral: Median Selection Subset Aggregation for Parallel Inference »
Xiangyu Wang · Peichao Peng · David B Dunson -
2013 Poster: Locally Adaptive Bayesian Multivariate Time Series »
Daniele Durante · Bruno Scarpa · David B Dunson -
2013 Poster: Multiscale Dictionary Learning for Estimating Conditional Distributions »
Francesca Petralia · Joshua T Vogelstein · David B Dunson -
2012 Poster: Multiresolution Gaussian Processes »
Emily Fox · David B Dunson -
2012 Poster: Repulsive Mixtures »
FRANCESCA PETRALIA · Vinayak Rao · David B Dunson -
2011 Poster: Generalized Beta Mixtures of Gaussians »
Artin Armagan · David B Dunson · Merlise Clyde -
2011 Poster: The Kernel Beta Process »
Lu Ren · Yingjian Wang · David B Dunson · Lawrence Carin -
2011 Spotlight: The Kernel Beta Process »
Lu Ren · Yingjian Wang · David B Dunson · Lawrence Carin -
2011 Poster: Hierarchical Topic Modeling for Analysis of Time-Evolving Personal Choices »
XianXing Zhang · David B Dunson · Lawrence Carin -
2010 Poster: Joint Analysis of Time-Evolving Binary Matrices and Associated Documents »
Eric X Wang · Dehong Liu · Jorge G Silva · David B Dunson · Lawrence Carin -
2009 Workshop: Nonparametric Bayes »
Dilan Gorur · Francois Caron · Yee Whye Teh · David B Dunson · Zoubin Ghahramani · Michael Jordan -
2009 Poster: A Bayesian Model for Simultaneous Image Clustering, Annotation and Object Segmentation »
Lan Du · Lu Ren · David B Dunson · Lawrence Carin