Timezone: »
Decision trees and randomized forests are widely used in computer vision and machine learning. Standard algorithms for decision tree induction optimize the split functions one node at a time according to some splitting criteria. This greedy procedure often leads to suboptimal trees. In this paper, we present an algorithm for optimizing the split functions at all levels of the tree jointly with the leaf parameters, based on a global objective. We show that the problem of finding optimal linear-combination (oblique) splits for decision trees is related to structured prediction with latent variables, and we formulate a convex-concave upper bound on the tree's empirical loss. Computing the gradient of the proposed surrogate objective with respect to each training exemplar is O(d^2), where d is the tree depth, and thus training deep trees is feasible. The use of stochastic gradient descent for optimization enables effective training with large datasets. Experiments on several classification benchmarks demonstrate that the resulting non-greedy decision trees outperform greedy decision tree baselines.
Author Information
Mohammad Norouzi (University of Toronto)
Maxwell Collins (UW-Madison)
Matthew A Johnson (Microsoft Research)
David Fleet (University of Toronto)
Pushmeet Kohli (Microsoft Research)
More from the Same Authors
-
2021 : Palette: Image-to-Image Diffusion Models »
Chitwan Saharia · William Chan · Huiwen Chang · Chris Lee · Jonathan Ho · Tim Salimans · David Fleet · Mohammad Norouzi -
2021 : Palette: Image-to-Image Diffusion Models »
Chitwan Saharia · William Chan · Huiwen Chang · Chris Lee · Jonathan Ho · Tim Salimans · David Fleet · Mohammad Norouzi -
2022 Poster: Residual Multiplicative Filter Networks for Multiscale Reconstruction »
Shayan Shekarforoush · David Lindell · David Fleet · Marcus Brubaker -
2023 Poster: The Surprising Effectiveness of Diffusion Models for Optical Flow and Monocular Depth Estimation »
Saurabh Saxena · Charles Herrmann · Junhwa Hur · Abhishek Kar · Mohammad Norouzi · Deqing Sun · David Fleet -
2023 Oral: The Surprising Effectiveness of Diffusion Models for Optical Flow and Monocular Depth Estimation »
Saurabh Saxena · Charles Herrmann · Junhwa Hur · Abhishek Kar · Mohammad Norouzi · Deqing Sun · David Fleet -
2022 Spotlight: Residual Multiplicative Filter Networks for Multiscale Reconstruction »
Shayan Shekarforoush · David Lindell · David Fleet · Marcus Brubaker -
2022 Spotlight: Lightning Talks 5B-1 »
Devansh Arpit · Xiaojun Xu · Zifan Shi · Ivan Skorokhodov · Shayan Shekarforoush · Zhan Tong · Yiqun Wang · Shichong Peng · Linyi Li · Ivan Skorokhodov · Huan Wang · Yibing Song · David Lindell · Yinghao Xu · Seyed Alireza Moazenipourasil · Sergey Tulyakov · Peter Wonka · Yiqun Wang · Ke Li · David Fleet · Yujun Shen · Yingbo Zhou · Bo Li · Jue Wang · Peter Wonka · Marcus Brubaker · Caiming Xiong · Limin Wang · Deli Zhao · Qifeng Chen · Dit-Yan Yeung -
2022 : Invited Speaker »
David Fleet -
2022 Poster: Video Diffusion Models »
Jonathan Ho · Tim Salimans · Alexey Gritsenko · William Chan · Mohammad Norouzi · David Fleet -
2022 Poster: Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding »
Chitwan Saharia · William Chan · Saurabh Saxena · Lala Li · Jay Whang · Remi Denton · Kamyar Ghasemipour · Raphael Gontijo Lopes · Burcu Karagol Ayan · Tim Salimans · Jonathan Ho · David Fleet · Mohammad Norouzi -
2022 Poster: A Unified Sequence Interface for Vision Tasks »
Ting Chen · Saurabh Saxena · Lala Li · Tsung-Yi Lin · David Fleet · Geoffrey Hinton -
2020 Poster: Exemplar VAE: Linking Generative Models, Nearest Neighbor Retrieval, and Data Augmentation »
Sajad Norouzi · David Fleet · Mohammad Norouzi -
2017 : Pushmeet Kohli »
Pushmeet Kohli -
2017 Poster: Learning Disentangled Representations with Semi-Supervised Deep Generative Models »
Siddharth Narayanaswamy · Brooks Paige · Jan-Willem van de Meent · Alban Desmaison · Noah Goodman · Pushmeet Kohli · Frank Wood · Philip Torr -
2016 Poster: PerforatedCNNs: Acceleration through Elimination of Redundant Convolutions »
Mikhail Figurnov · Aizhan Ibraimova · Dmitry Vetrov · Pushmeet Kohli -
2016 Poster: Adaptive Neural Compilation »
Rudy Bunel · Alban Desmaison · Pawan K Mudigonda · Pushmeet Kohli · Philip Torr -
2016 Demonstration: Project Malmo - Minecraft for AI Research »
Katja Hofmann · Matthew A Johnson · Fernando Diaz · Alekh Agarwal · Tim Hutton · David Bignell · Evelyne Viegas -
2016 Poster: Batched Gaussian Process Bandit Optimization via Determinantal Point Processes »
Tarun Kathuria · Amit Deshpande · Pushmeet Kohli -
2015 Poster: Deep Convolutional Inverse Graphics Network »
Tejas Kulkarni · William Whitney · Pushmeet Kohli · Josh Tenenbaum -
2015 Spotlight: Deep Convolutional Inverse Graphics Network »
Tejas Kulkarni · William Whitney · Pushmeet Kohli · Josh Tenenbaum -
2014 Poster: Just-In-Time Learning for Fast and Flexible Inference »
S. M. Ali Eslami · Danny Tarlow · Pushmeet Kohli · John Winn -
2013 Poster: Decision Jungles: Compact and Rich Models for Classification »
Jamie Shotton · Toby Sharp · Pushmeet Kohli · Sebastian Nowozin · John Winn · Antonio Criminisi -
2013 Poster: Efficient Optimization for Sparse Gaussian Process Regression »
Yanshuai Cao · Marcus Brubaker · David Fleet · Aaron Hertzmann -
2012 Poster: Hamming Distance Metric Learning »
Mohammad Norouzi · Russ Salakhutdinov · David Fleet -
2012 Poster: Multiple Choice Learning: Learning to Produce Multiple Structured Outputs »
Abner Guzmán-Rivera · Dhruv Batra · Pushmeet Kohli -
2012 Poster: Context-Sensitive Decision Forests for Object Detection »
Peter Kontschieder · Samuel Rota Bulò · Antonio Criminisi · Pushmeet Kohli · Marcello Pelillo · Horst Bischof -
2011 Poster: Higher-Order Correlation Clustering for Image Segmentation »
Sungwoong Kim · Sebastian Nowozin · Pushmeet Kohli · Chang D. D Yoo -
2009 Poster: Local Rules for Global MAP: When Do They Work ? »
Kyomin Jung · Pushmeet Kohli · Devavrat Shah -
2008 Session: Oral session 7: Complex Dynamical Systems: Modeling and Estimation »
David Fleet