Timezone: »
In this paper we introduce a generative model capable of producing high quality samples of natural images. Our approach uses a cascade of convolutional networks (convnets) within a Laplacian pyramid framework to generate images in a coarse-to-fine fashion. At each level of the pyramid a separate generative convnet model is trained using the Generative Adversarial Nets (GAN) approach. Samples drawn from our model are of significantly higher quality than existing models. In a quantitive assessment by human evaluators our CIFAR10 samples were mistaken for real images around 40% of the time, compared to 10% for GAN samples. We also show samples from more diverse datasets such as STL10 and LSUN.
Author Information
Emily Denton (New York University)
Emily Denton is a Research Scientist at Google where they examine the societal impacts of AI technology. Their recent research centers on critically examining the norms, values, and work practices that structure the development and use of machine learning datasets. Prior to joining Google, Emily received their PhD in machine learning from the Courant Institute of Mathematical Sciences at New York University, where they focused on unsupervised learning and generative modeling of images and video.
Soumith Chintala (Facebook AI Research)
arthur szlam (Facebook)
Rob Fergus (Facebook AI Research)
More from the Same Authors
-
2021 Spotlight: Hash Layers For Large Sparse Models »
Stephen Roller · Sainbayar Sukhbaatar · arthur szlam · Jason Weston -
2022 : Learning to Reason and Memorize with Self-Questioning »
Jack Lanchantin · Shubham Toshniwal · Jason E Weston · arthur szlam · Sainbayar Sukhbaatar -
2022 : Fifteen-minute Competition Overview Video »
Maartje Anne ter Hoeve · Mikhail Burtsev · Zoya Volovikova · Ziming Li · Yuxuan Sun · Shrestha Mohanty · Negar Arabzadeh · Mohammad Aliannejadi · Milagro Teruel · Marc-Alexandre Côté · Kavya Srinet · arthur szlam · Artem Zholus · Alexey Skrynnik · Aleksandr Panov · Ahmed Awadallah · Julia Kiseleva -
2023 Poster: Learning to Reason and Memorize with Self-Notes »
Jack Lanchantin · Shubham Toshniwal · Jason E Weston · arthur szlam · Sainbayar Sukhbaatar -
2022 Competition: IGLU: Interactive Grounded Language Understanding in a Collaborative Environment »
Julia Kiseleva · Alexey Skrynnik · Artem Zholus · Shrestha Mohanty · Negar Arabzadeh · Marc-Alexandre Côté · Mohammad Aliannejadi · Milagro Teruel · Ziming Li · Mikhail Burtsev · Maartje Anne ter Hoeve · Zoya Volovikova · Aleksandr Panov · Yuxuan Sun · arthur szlam · Ahmed Awadallah · Kavya Srinet -
2022 : Learning to Reason and Memorize with Self-Questioning »
Jack Lanchantin · Shubham Toshniwal · Jason E Weston · arthur szlam · Sainbayar Sukhbaatar -
2021 Poster: Hash Layers For Large Sparse Models »
Stephen Roller · Sainbayar Sukhbaatar · arthur szlam · Jason Weston -
2021 : IGLU: Interactive Grounded Language Understanding in a Collaborative Environment + Q&A »
Julia Kiseleva · Ziming Li · Mohammad Aliannejadi · Maartje Anne ter Hoeve · Mikhail Burtsev · Alexey Skrynnik · Artem Zholus · Aleksandr Panov · Katja Hofmann · Kavya Srinet · arthur szlam · Michel Galley · Ahmed Awadallah -
2021 : Case Study »
Timnit Gebru · Emily Denton -
2021 : Whose ground truth? Challenging the mythical objective, neutral standpoint »
Emily Denton -
2021 Tutorial: Beyond Fairness in Machine Learning »
Timnit Gebru · Emily Denton -
2019 Poster: PyTorch: An Imperative Style, High-Performance Deep Learning Library »
Adam Paszke · Sam Gross · Francisco Massa · Adam Lerer · James Bradbury · Gregory Chanan · Trevor Killeen · Zeming Lin · Natalia Gimelshein · Luca Antiga · Alban Desmaison · Andreas Kopf · Edward Yang · Zachary DeVito · Martin Raison · Alykhan Tejani · Sasank Chilamkurthy · Benoit Steiner · Lu Fang · Junjie Bai · Soumith Chintala -
2018 : Lunch provided and Open Source ML Systems Showcase (TensorFlow, PyTorch 1.0, MxNET, Keras, CoreML, Ray, Chainer) »
Rajat Monga · Soumith Chintala · Thierry Moreau · Francois Chollet · Daniel Crankshaw · Robert Nishihara · Seiya Tokui -
2017 : Tips and tricks of coding papers on PyTorch »
Soumith Chintala -
2017 Workshop: Learning Disentangled Features: from Perception to Control »
Emily Denton · Siddharth Narayanaswamy · Tejas Kulkarni · Honglak Lee · Diane Bouchacourt · Josh Tenenbaum · David Pfau -
2017 : Updates from Current ML Systems (TensorFlow, PyTorch, Caffe2, CNTK, MXNet, TVM, Clipper, MacroBase, ModelDB) »
Rajat Monga · Soumith Chintala · Cha Zhang · Tianqi Chen · Daniel Crankshaw · Kai Sheng Tai · Andrew Tulloch · Manasi Vartak -
2017 : Invited Talk »
Emily Denton -
2017 Poster: Unsupervised Learning of Disentangled Representations from Video »
Emily Denton · vighnesh Birodkar -
2017 Spotlight: Unsupervised Learning of Disentangled Representations from Video »
Emily Denton · vighnesh Birodkar -
2017 Tutorial: Geometric Deep Learning on Graphs and Manifolds »
Michael Bronstein · Joan Bruna · arthur szlam · Xavier Bresson · Yann LeCun -
2016 : Discussion panel »
Ian Goodfellow · Soumith Chintala · Arthur Gretton · Sebastian Nowozin · Aaron Courville · Yann LeCun · Emily Denton -
2016 : How to train a GAN? »
Soumith Chintala -
2016 Workshop: Intuitive Physics »
Adam Lerer · Jiajun Wu · Josh Tenenbaum · Emmanuel Dupoux · Rob Fergus -
2016 Poster: The Product Cut »
Thomas Laurent · James von Brecht · Xavier Bresson · arthur szlam -
2016 Poster: Learning Multiagent Communication with Backpropagation »
Sainbayar Sukhbaatar · arthur szlam · Rob Fergus -
2015 Poster: End-To-End Memory Networks »
Sainbayar Sukhbaatar · arthur szlam · Jason Weston · Rob Fergus -
2015 Oral: End-To-End Memory Networks »
Sainbayar Sukhbaatar · arthur szlam · Jason Weston · Rob Fergus -
2014 Poster: Exploiting Linear Structure Within Convolutional Networks for Efficient Evaluation »
Emily Denton · Wojciech Zaremba · Joan Bruna · Yann LeCun · Rob Fergus