Timezone: »
Bayesian nonparametric hidden Markov models are typically learned via fixed truncations of the infinite state space or local Monte Carlo proposals that make small changes to the state space. We develop an inference algorithm for the sticky hierarchical Dirichlet process hidden Markov model that scales to big datasets by processing a few sequences at a time yet allows rapid adaptation of the state space cardinality. Unlike previous point-estimate methods, our novel variational bound penalizes redundant or irrelevant states and thus enables optimization of the state space. Our birth proposals use observed data statistics to create useful new states that escape local optima. Merge and delete proposals remove ineffective states to yield simpler models with more affordable future computations. Experiments on speaker diarization, motion capture, and epigenetic chromatin datasets discover models that are more compact, more interpretable, and better aligned to ground truth segmentations than competitors. We have released an open-source Python implementation which can parallelize local inference steps across sequences.
Author Information
Michael Hughes (Brown University)
William Stephenson (Brown University)
Erik Sudderth (Brown University)
More from the Same Authors
-
2021 : The Tufts fNIRS Mental Workload Dataset & Benchmark for Brain-Computer Interfaces that Generalize »
zhe huang · Liang Wang · Giles Blaney · Christopher Slaughter · Devon McKeon · Ziyu Zhou · Robert Jacob · Michael Hughes -
2022 : Predicting Spatiotemporal Counts of Opioid-related Fatal Overdoses via Zero-Inflated Gaussian Processes »
Kyle Heuton · Shikhar Shrestha · Thomas Stopka · Jennifer Pustz · · Michael Hughes -
2022 : Semi-supervised Learning from Uncurated Echocardiogram Images with Fix-A-Step »
Zhe Huang · Mary-Joy Sidhom · Benjamin Wessler · Michael Hughes -
2022 : Prediction-Constrained Markov Models for Medical Time Series with Missing Data and Few Labels »
Preetish Rath · Gabe Hope · Kyle Heuton · Erik Sudderth · Michael Hughes -
2022 : Prediction-Constrained Markov Models for Medical Time Series with Missing Data and Few Labels »
Preetish Rath · Gabe Hope · Kyle Heuton · Erik Sudderth · Michael Hughes -
2021 Workshop: Your Model is Wrong: Robustness and misspecification in probabilistic modeling »
Diana Cai · Sameer Deshpande · Michael Hughes · Tamara Broderick · Trevor Campbell · Nick Foti · Barbara Engelhardt · Sinead Williamson -
2021 Poster: Scalable and Stable Surrogates for Flexible Classifiers with Fairness Constraints »
Henry C Bendekgey · Erik Sudderth -
2021 Poster: Dynamical Wasserstein Barycenters for Time-series Modeling »
Kevin Cheng · Shuchin Aeron · Michael Hughes · Eric L Miller -
2020 : Invited Talk: Mike Hughes - The Case for Prediction Constrained Training »
Michael Hughes -
2018 Workshop: Machine Learning for Health (ML4H): Moving beyond supervised learning in healthcare »
Andrew Beam · Tristan Naumann · Marzyeh Ghassemi · Matthew McDermott · Madalina Fiterau · Irene Y Chen · Brett Beaulieu-Jones · Michael Hughes · Farah Shamout · Corey Chivers · Jaz Kandola · Alexandre Yahi · Samuel Finlayson · Bruno Jedynak · Peter Schulam · Natalia Antropova · Jason Fries · Adrian Dalca · Irene Chen -
2018 Workshop: All of Bayesian Nonparametrics (Especially the Useful Bits) »
Diana Cai · Trevor Campbell · Michael Hughes · Tamara Broderick · Nick Foti · Sinead Williamson -
2017 : Coffee break and Poster Session I »
Nishith Khandwala · Steve Gallant · Gregory Way · Aniruddh Raghu · Li Shen · Aydan Gasimova · Alican Bozkurt · William Boag · Daniel Lopez-Martinez · Ulrich Bodenhofer · Samaneh Nasiri GhoshehBolagh · Michelle Guo · Christoph Kurz · Kirubin Pillay · Kimis Perros · George H Chen · Alexandre Yahi · Madhumita Sushil · Sanjay Purushotham · Elena Tutubalina · Tejpal Virdi · Marc-Andre Schulz · Samuel Weisenthal · Bharat Srikishan · Petar Veličković · Kartik Ahuja · Andrew Miller · Erin Craig · Disi Ji · Filip Dabek · Chloé Pou-Prom · Hejia Zhang · Janani Kalyanam · Wei-Hung Weng · Harish Bhat · Hugh Chen · Simon Kohl · Mingwu Gao · Tingting Zhu · Ming-Zher Poh · Iñigo Urteaga · Antoine Honoré · Alessandro De Palma · Maruan Al-Shedivat · Pranav Rajpurkar · Matthew McDermott · Vincent Chen · Yanan Sui · Yun-Geun Lee · Li-Fang Cheng · Chen Fang · Sibt ul Hussain · Cesare Furlanello · Zeev Waks · Hiba Chougrad · Hedvig Kjellstrom · Finale Doshi-Velez · Wolfgang Fruehwirt · Yanqing Zhang · Lily Hu · Junfang Chen · Sunho Park · Gatis Mikelsons · Jumana Dakka · Stephanie Hyland · yann chevaleyre · Hyunwoo Lee · Xavier Giro-i-Nieto · David Kale · Michael Hughes · Gabriel Erion · Rishab Mehra · William Zame · Stojan Trajanovski · Prithwish Chakraborty · Kelly Peterson · Muktabh Mayank Srivastava · Amy Jin · Heliodoro Tejeda Lemus · Priyadip Ray · Tamas Madl · Joseph Futoma · Enhao Gong · Syed Rameel Ahmad · Eric Lei · Ferdinand Legros -
2017 Workshop: Machine Learning for Health (ML4H) - What Parts of Healthcare are Ripe for Disruption by Machine Learning Right Now? »
Jason Fries · Alex Wiltschko · Andrew Beam · Isaac S Kohane · Jasper Snoek · Peter Schulam · Madalina Fiterau · David Kale · Rajesh Ranganath · Bruno Jedynak · Michael Hughes · Tristan Naumann · Natalia Antropova · Adrian Dalca · SHUBHI ASTHANA · Prateek Tandon · Jaz Kandola · Uri Shalit · Marzyeh Ghassemi · Tim Althoff · Alexander Ratner · Jumana Dakka -
2016 Workshop: Practical Bayesian Nonparametrics »
Nick Foti · Tamara Broderick · Trevor Campbell · Michael Hughes · Jeffrey Miller · Aaron Schein · Sinead Williamson · Yanxun Xu -
2014 Workshop: 3rd NIPS Workshop on Probabilistic Programming »
Daniel Roy · Josh Tenenbaum · Thomas Dietterich · Stuart J Russell · YI WU · Ulrik R Beierholm · Alp Kucukelbir · Zenna Tavares · Yura Perov · Daniel Lee · Brian Ruttenberg · Sameer Singh · Michael Hughes · Marco Gaboardi · Alexey Radul · Vikash Mansinghka · Frank Wood · Sebastian Riedel · Prakash Panangaden -
2013 Poster: Efficient Online Inference for Bayesian Nonparametric Relational Models »
Dae Il Kim · Prem Gopalan · David Blei · Erik Sudderth -
2013 Poster: Memoized Online Variational Inference for Dirichlet Process Mixture Models »
Michael Hughes · Erik Sudderth -
2012 Poster: Effective Split-Merge Monte Carlo Methods for Nonparametric Models of Sequential Data »
Michael Hughes · Emily Fox · Erik Sudderth -
2012 Poster: Truly Nonparametric Online Variational Inference for Hierarchical Dirichlet Processes »
Michael Bryant · Erik Sudderth -
2012 Poster: Minimization of Continuous Bethe Approximations: A Positive Variation »
Jason Pacheco · Erik Sudderth -
2012 Poster: From Deformations to Parts: Motion-based Segmentation of 3D Objects »
Soumya Ghosh · Erik Sudderth · Matthew Loper · Michael J Black -
2011 Poster: The Doubly Correlated Nonparametric Topic Model »
Dae Il Kim · Erik Sudderth -
2011 Poster: Spatial distance dependent Chinese Restaurant Process for image segmentation »
Soumya Ghosh · Andrei B Ungureanu · Erik Sudderth · David Blei -
2010 Poster: Global seismic monitoring as probabilistic inference »
Nimar Arora · Stuart J Russell · Paul Kidwell · Erik Sudderth -
2010 Spotlight: Layered image motion with explicit occlusions, temporal consistency, and depth ordering »
Deqing Sun · Erik Sudderth · Michael J Black -
2010 Poster: Layered image motion with explicit occlusions, temporal consistency, and depth ordering »
Deqing Sun · Erik Sudderth · Michael J Black -
2009 Session: Oral session 9: Bayesian Analysis »
Erik Sudderth -
2009 Poster: Sharing Features among Dynamical Systems with Beta Processes »
Emily Fox · Erik Sudderth · Michael Jordan · Alan S Willsky -
2009 Oral: Sharing Features among Dynamical Systems with Beta Processes »
Emily Fox · Erik Sudderth · Michael Jordan · Alan S Willsky -
2008 Oral: Shared Segmentation of Natural Scenes Using Dependent Pitman-Yor Processes »
Erik Sudderth · Michael Jordan -
2008 Poster: Nonparametric Bayesian Learning of Switching Linear Dynamical Systems »
Emily Fox · Erik Sudderth · Michael Jordan · Alan S Willsky -
2008 Poster: Shared Segmentation of Natural Scenes Using Dependent Pitman-Yor Processes »
Erik Sudderth · Michael Jordan -
2008 Spotlight: Nonparametric Bayesian Learning of Switching Linear Dynamical Systems »
Emily Fox · Erik Sudderth · Michael Jordan · Alan S Willsky -
2008 Session: Oral session 4: Combinatorial Approximation »
Erik Sudderth -
2007 Poster: Loop Series and Bethe Variational Bounds in Attractive Graphical Models »
Erik Sudderth · Martin J Wainwright · Alan S Willsky