Timezone: »
Poster
Unified View of Matrix Completion under General Structural Constraints
Suriya Gunasekar · Arindam Banerjee · Joydeep Ghosh
Matrix completion problems have been widely studied under special low dimensional structures such as low rank or structure induced by decomposable norms. In this paper, we present a unified analysis of matrix completion under general low-dimensional structural constraints induced by {\em any} norm regularization.We consider two estimators for the general problem of structured matrix completion, and provide unified upper bounds on the sample complexity and the estimation error. Our analysis relies on generic chaining, and we establish two intermediate results of independent interest: (a) in characterizing the size or complexity of low dimensional subsets in high dimensional ambient space, a certain \textit{\modified}~complexity measure encountered in the analysis of matrix completion problems is characterized in terms of a well understood complexity measure of Gaussian widths, and (b) it is shown that a form of restricted strong convexity holds for matrix completion problems under general norm regularization. Further, we provide several non-trivial examples of structures included in our framework, notably including the recently proposed spectral $k$-support norm.
Author Information
Suriya Gunasekar (UT Austin)
Arindam Banerjee (University of Minnesota)
Arindam Banerjee is a Professor at the Department of Computer & Engineering and a Resident Fellow at the Institute on the Environment at the University of Minnesota, Twin Cities. His research interests are in machine learning, data mining, and applications in complex real-world problems in different areas including climate science, ecology, recommendation systems, text analysis, and finance. He has won several awards, including the NSF CAREER award (2010), the IBM Faculty Award (2013), and six best paper awards in top-tier conferences.
Joydeep Ghosh (UT Austin)
More from the Same Authors
-
2020 Poster: Gradient Boosted Normalizing Flows »
Robert Giaquinto · Arindam Banerjee -
2019 Poster: Random Quadratic Forms with Dependence: Applications to Restricted Isometry and Beyond »
Arindam Banerjee · Qilong Gu · Vidyashankar Sivakumar · Steven Wu -
2018 Poster: An Improved Analysis of Alternating Minimization for Structured Multi-Response Regression »
Sheng Chen · Arindam Banerjee -
2017 Poster: Alternating Estimation for Structured High-Dimensional Multi-Response Models »
Sheng Chen · Arindam Banerjee -
2016 Poster: Preference Completion from Partial Rankings »
Suriya Gunasekar · Sanmi Koyejo · Joydeep Ghosh -
2016 Poster: High Dimensional Structured Superposition Models »
Qilong Gu · Arindam Banerjee -
2016 Poster: Structured Matrix Recovery via the Generalized Dantzig Selector »
Sheng Chen · Arindam Banerjee -
2015 Poster: Beyond Sub-Gaussian Measurements: High-Dimensional Structured Estimation with Sub-Exponential Designs »
Vidyashankar Sivakumar · Arindam Banerjee · Pradeep Ravikumar -
2015 Poster: Structured Estimation with Atomic Norms: General Bounds and Applications »
Sheng Chen · Arindam Banerjee -
2014 Poster: Bregman Alternating Direction Method of Multipliers »
Huahua Wang · Arindam Banerjee -
2014 Poster: On Prior Distributions and Approximate Inference for Structured Variables »
Sanmi Koyejo · Rajiv Khanna · Joydeep Ghosh · Russell Poldrack -
2014 Poster: Estimation with Norm Regularization »
Arindam Banerjee · Sheng Chen · Farideh Fazayeli · Vidyashankar Sivakumar -
2014 Poster: Generalized Dantzig Selector: Application to the k-support norm »
Soumyadeep Chatterjee · Sheng Chen · Arindam Banerjee -
2014 Poster: Parallel Direction Method of Multipliers »
Huahua Wang · Arindam Banerjee · Zhi-Quan Luo -
2014 Tutorial: Climate Change: Challenges for Machine Learning »
Arindam Banerjee · Claire Monteleoni -
2013 Poster: Large Scale Distributed Sparse Precision Estimation »
Huahua Wang · Arindam Banerjee · Cho-Jui Hsieh · Pradeep Ravikumar · Inderjit Dhillon