Timezone: »
Subspace clustering is an unsupervised learning problem that aims at grouping data points into multiple clusters'' so that data points in a single cluster lie approximately on a low-dimensional linear subspace. It is originally motivated by 3D motion segmentation in computer vision, but has recently been generically applied to a wide range of statistical machine learning problems, which often involves sensitive datasets about human subjects. This raises a dire concern for data privacy. In this work, we build on the framework of
differential privacy'' and present two provably private subspace clustering algorithms. We demonstrate via both theory and experiments that one of the presented methods enjoys formal privacy and utility guarantees; the other one asymptotically preserves differential privacy while having good performance in practice. Along the course of the proof, we also obtain two new provable guarantees for the agnostic subspace clustering and the graph connectivity problem which might be of independent interests.
Author Information
Yining Wang (Carnegie Mellon University)
Yu-Xiang Wang (CMU)
Aarti Singh (CMU)
More from the Same Authors
-
2021 Spotlight: Logarithmic Regret in Feature-based Dynamic Pricing »
Jianyu Xu · Yu-Xiang Wang -
2021 Poster: Local Signal Adaptivity: Provable Feature Learning in Neural Networks Beyond Kernels »
Stefani Karp · Ezra Winston · Yuanzhi Li · Aarti Singh -
2021 Poster: Privately Publishable Per-instance Privacy »
Rachel Redberg · Yu-Xiang Wang -
2021 Poster: Logarithmic Regret in Feature-based Dynamic Pricing »
Jianyu Xu · Yu-Xiang Wang -
2021 Poster: Optimal Uniform OPE and Model-based Offline Reinforcement Learning in Time-Homogeneous, Reward-Free and Task-Agnostic Settings »
Ming Yin · Yu-Xiang Wang -
2021 Poster: Towards Instance-Optimal Offline Reinforcement Learning with Pessimism »
Ming Yin · Yu-Xiang Wang -
2021 Poster: Near-Optimal Offline Reinforcement Learning via Double Variance Reduction »
Ming Yin · Yu Bai · Yu-Xiang Wang -
2020 Poster: Preference-based Reinforcement Learning with Finite-Time Guarantees »
Yichong Xu · Ruosong Wang · Lin Yang · Aarti Singh · Artur Dubrawski -
2020 Spotlight: Preference-based Reinforcement Learning with Finite-Time Guarantees »
Yichong Xu · Ruosong Wang · Lin Yang · Aarti Singh · Artur Dubrawski -
2019 Poster: On Testing for Biases in Peer Review »
Ivan Stelmakh · Nihar Shah · Aarti Singh -
2019 Spotlight: On Testing for Biases in Peer Review »
Ivan Stelmakh · Nihar Shah · Aarti Singh -
2018 Poster: How Many Samples are Needed to Estimate a Convolutional Neural Network? »
Simon Du · Yining Wang · Xiyu Zhai · Sivaraman Balakrishnan · Russ Salakhutdinov · Aarti Singh -
2018 Poster: Optimization of Smooth Functions with Noisy Observations: Local Minimax Rates »
Yining Wang · Sivaraman Balakrishnan · Aarti Singh -
2017 Poster: Hypothesis Transfer Learning via Transformation Functions »
Simon Du · Jayanth Koushik · Aarti Singh · Barnabas Poczos -
2017 Poster: Gradient Descent Can Take Exponential Time to Escape Saddle Points »
Simon Du · Chi Jin · Jason D Lee · Michael Jordan · Aarti Singh · Barnabas Poczos -
2017 Poster: Higher-Order Total Variation Classes on Grids: Minimax Theory and Trend Filtering Methods »
Veeranjaneyulu Sadhanala · Yu-Xiang Wang · James Sharpnack · Ryan Tibshirani -
2017 Spotlight: Gradient Descent Can Take Exponential Time to Escape Saddle Points »
Simon Du · Chi Jin · Jason D Lee · Michael Jordan · Aarti Singh · Barnabas Poczos -
2017 Poster: On the Power of Truncated SVD for General High-rank Matrix Estimation Problems »
Simon Du · Yining Wang · Aarti Singh -
2017 Poster: Noise-Tolerant Interactive Learning Using Pairwise Comparisons »
Yichong Xu · Hongyang Zhang · Aarti Singh · Artur Dubrawski · Kyle Miller -
2016 : Optimal and Adaptive Off-policy Evaluation in Contextual Bandits »
Yu-Xiang Wang -
2016 Poster: Data Poisoning Attacks on Factorization-Based Collaborative Filtering »
Bo Li · Yining Wang · Aarti Singh · Yevgeniy Vorobeychik -
2016 Poster: Total Variation Classes Beyond 1d: Minimax Rates, and the Limitations of Linear Smoothers »
Veeranjaneyulu Sadhanala · Yu-Xiang Wang · Ryan Tibshirani -
2016 Poster: Online and Differentially-Private Tensor Decomposition »
Yining Wang · Anima Anandkumar -
2015 : Yu-Xiang Wang: Learning with differential privacy: stability, learnability and the sufficiency and necessity of ERM principle »
Yu-Xiang Wang -
2015 : Tsybakov Noise Adaptive Margin-Based Active Learning »
Aarti Singh -
2015 Poster: Fast and Guaranteed Tensor Decomposition via Sketching »
Yining Wang · Hsiao-Yu Tung · Alexander Smola · Anima Anandkumar -
2015 Spotlight: Fast and Guaranteed Tensor Decomposition via Sketching »
Yining Wang · Hsiao-Yu Tung · Alexander Smola · Anima Anandkumar -
2014 Poster: Spectral Methods for Supervised Topic Models »
Yining Wang · Jun Zhu -
2013 Poster: Near-optimal Anomaly Detection in Graphs using Lovasz Extended Scan Statistic »
James L Sharpnack · Akshay Krishnamurthy · Aarti Singh -
2013 Poster: Low-Rank Matrix and Tensor Completion via Adaptive Sampling »
Akshay Krishnamurthy · Aarti Singh -
2013 Poster: Minimax Theory for High-dimensional Gaussian Mixtures with Sparse Mean Separation »
Martin Azizyan · Aarti Singh · Larry Wasserman -
2013 Poster: Cluster Trees on Manifolds »
Sivaraman Balakrishnan · Srivatsan Narayanan · Alessandro Rinaldo · Aarti Singh · Larry Wasserman -
2012 Workshop: Algebraic Topology and Machine Learning »
Sivaraman Balakrishnan · Alessandro Rinaldo · Donald Sheehy · Aarti Singh · Larry Wasserman -
2011 Poster: Minimax Localization of Structural Information in Large Noisy Matrices »
Mladen Kolar · Sivaraman Balakrishnan · Alessandro Rinaldo · Aarti Singh -
2011 Poster: Noise Thresholds for Spectral Clustering »
Sivaraman Balakrishnan · Min Xu · Akshay Krishnamurthy · Aarti Singh -
2011 Spotlight: Noise Thresholds for Spectral Clustering »
Sivaraman Balakrishnan · Min Xu · Akshay Krishnamurthy · Aarti Singh -
2011 Spotlight: Minimax Localization of Structural Information in Large Noisy Matrices »
Mladen Kolar · Sivaraman Balakrishnan · Alessandro Rinaldo · Aarti Singh -
2010 Oral: Identifying graph-structured activation patterns in networks »
James L Sharpnack · Aarti Singh -
2010 Poster: Identifying graph-structured activation patterns in networks »
James L Sharpnack · Aarti Singh -
2008 Poster: Unlabeled data: Now it helps, now it doesn't »
Aarti Singh · Rob Nowak · Jerry Zhu -
2008 Oral: Unlabeled data: Now it helps, now it doesn't »
Aarti Singh · Rob Nowak · Jerry Zhu