Timezone: »

Tractable Bayesian Network Structure Learning with Bounded Vertex Cover Number
Janne H Korhonen · Pekka Parviainen

Thu Dec 10 08:00 AM -- 12:00 PM (PST) @ 210 C #67 #None
Both learning and inference tasks on Bayesian networks are NP-hard in general. Bounded tree-width Bayesian networks have recently received a lot of attention as a way to circumvent this complexity issue; however, while inference on bounded tree-width networks is tractable, the learning problem remains NP-hard even for tree-width~2. In this paper, we propose bounded vertex cover number Bayesian networks as an alternative to bounded tree-width networks. In particular, we show that both inference and learning can be done in polynomial time for any fixed vertex cover number bound $k$, in contrast to the general and bounded tree-width cases; on the other hand, we also show that learning problem is W[1]-hard in parameter $k$. Furthermore, we give an alternative way to learn bounded vertex cover number Bayesian networks using integer linear programming (ILP), and show this is feasible in practice.

Author Information

Janne H Korhonen (University of Helsinki)
Pekka Parviainen (Aalto University)