Timezone: »
Poster
M-Best-Diverse Labelings for Submodular Energies and Beyond
Alexander Kirillov · Dmytro Shlezinger · Dmitry Vetrov · Carsten Rother · Bogdan Savchynskyy
We consider the problem of finding M best diverse solutions of energy minimization problems for graphical models. Contrary to the sequential method of Batra et al., which greedily finds one solution after another, we infer all $M$ solutions jointly. It was shown recently that such jointly inferred labelings not only have smaller total energy but also qualitatively outperform the sequentially obtained ones. The only obstacle for using this new technique is the complexity of the corresponding inference problem, since it is considerably slower algorithm than the method of Batra et al. In this work we show that the joint inference of $M$ best diverse solutions can be formulated as a submodular energy minimization if the original MAP-inference problem is submodular, hence fast inference techniques can be used. In addition to the theoretical results we provide practical algorithms that outperform the current state-of-the art and can be used in both submodular and non-submodular case.
Author Information
Alexander Kirillov (TU Dresden)
Dmytro Shlezinger (TU Dresden)
Dmitry Vetrov (Skoltech, Moscow)
Carsten Rother (TU Dresden)
Bogdan Savchynskyy (TU Dresden)
More from the Same Authors
-
2022 Poster: HyperDomainNet: Universal Domain Adaptation for Generative Adversarial Networks »
Aibek Alanov · Vadim Titov · Dmitry Vetrov -
2022 Spotlight: Lightning Talks 3B-2 »
Yu Huang · Tero Karras · Maxim Kodryan · Shiau Hong Lim · Shudong Huang · Ziyu Wang · Siqiao Xue · ILYAS MALIK · Ekaterina Lobacheva · Miika Aittala · Hongjie Wu · Yuhao Zhou · Yingbin Liang · Xiaoming Shi · Jun Zhu · Maksim Nakhodnov · Timo Aila · Yazhou Ren · James Zhang · Longbo Huang · Dmitry Vetrov · Ivor Tsang · Hongyuan Mei · Samuli Laine · Zenglin Xu · Wentao Feng · Jiancheng Lv -
2022 Spotlight: HyperDomainNet: Universal Domain Adaptation for Generative Adversarial Networks »
Aibek Alanov · Vadim Titov · Dmitry Vetrov -
2022 Spotlight: Training Scale-Invariant Neural Networks on the Sphere Can Happen in Three Regimes »
Maxim Kodryan · Ekaterina Lobacheva · Maksim Nakhodnov · Dmitry Vetrov -
2022 Spotlight: Lightning Talks 3B-1 »
Tianying Ji · Tongda Xu · Giulia Denevi · Aibek Alanov · Martin Wistuba · Wei Zhang · Yuesong Shen · Massimiliano Pontil · Vadim Titov · Yan Wang · Yu Luo · Daniel Cremers · Yanjun Han · Arlind Kadra · Dailan He · Josif Grabocka · Zhengyuan Zhou · Fuchun Sun · Carlo Ciliberto · Dmitry Vetrov · Mingxuan Jing · Chenjian Gao · Aaron Flores · Tsachy Weissman · Han Gao · Fengxiang He · Kunzan Liu · Wenbing Huang · Hongwei Qin -
2022 Poster: Training Scale-Invariant Neural Networks on the Sphere Can Happen in Three Regimes »
Maxim Kodryan · Ekaterina Lobacheva · Maksim Nakhodnov · Dmitry Vetrov -
2021 Poster: Leveraging Recursive Gumbel-Max Trick for Approximate Inference in Combinatorial Spaces »
Kirill Struminsky · Artyom Gadetsky · Denis Rakitin · Danil Karpushkin · Dmitry Vetrov -
2021 Poster: On the Periodic Behavior of Neural Network Training with Batch Normalization and Weight Decay »
Ekaterina Lobacheva · Maxim Kodryan · Nadezhda Chirkova · Andrey Malinin · Dmitry Vetrov -
2020 Poster: On Power Laws in Deep Ensembles »
Ekaterina Lobacheva · Nadezhda Chirkova · Maxim Kodryan · Dmitry Vetrov -
2020 Spotlight: On Power Laws in Deep Ensembles »
Ekaterina Lobacheva · Nadezhda Chirkova · Maxim Kodryan · Dmitry Vetrov -
2019 Poster: The Implicit Metropolis-Hastings Algorithm »
Kirill Neklyudov · Evgenii Egorov · Dmitry Vetrov -
2019 Poster: Importance Weighted Hierarchical Variational Inference »
Artem Sobolev · Dmitry Vetrov -
2019 Poster: A Prior of a Googol Gaussians: a Tensor Ring Induced Prior for Generative Models »
Maxim Kuznetsov · Daniil Polykovskiy · Dmitry Vetrov · Alex Zhebrak -
2019 Poster: A Simple Baseline for Bayesian Uncertainty in Deep Learning »
Wesley Maddox · Pavel Izmailov · Timur Garipov · Dmitry Vetrov · Andrew Gordon Wilson -
2018 : TBC 2 »
Dmitry Vetrov -
2018 Poster: Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs »
Timur Garipov · Pavel Izmailov · Dmitrii Podoprikhin · Dmitry Vetrov · Andrew Wilson -
2018 Spotlight: Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs »
Timur Garipov · Pavel Izmailov · Dmitrii Podoprikhin · Dmitry Vetrov · Andrew Wilson -
2017 Poster: Structured Bayesian Pruning via Log-Normal Multiplicative Noise »
Kirill Neklyudov · Dmitry Molchanov · Arsenii Ashukha · Dmitry Vetrov -
2016 Poster: PerforatedCNNs: Acceleration through Elimination of Redundant Convolutions »
Mikhail Figurnov · Aizhan Ibraimova · Dmitry Vetrov · Pushmeet Kohli -
2016 Demonstration: Detecting Unexpected Obstacles for Self-Driving Cars: Fusing Deep Learning and Geometric Modeling »
Sebastian Ramos · Peter Pinggera · stefan gehrig · Daimler AG · Carsten Rother -
2016 Poster: Joint M-Best-Diverse Labelings as a Parametric Submodular Minimization »
Alexander Kirillov · Alexander Shekhovtsov · Carsten Rother · Bogdan Savchynskyy -
2015 Poster: Tensorizing Neural Networks »
Alexander Novikov · Dmitrii Podoprikhin · Anton Osokin · Dmitry Vetrov -
2013 Poster: Higher Order Priors for Joint Intrinsic Image, Objects, and Attributes Estimation »
Vibhav Vineet · Carsten Rother · Philip Torr