Timezone: »
Poster
On the Limitation of Spectral Methods: From the Gaussian Hidden Clique Problem to Rank-One Perturbations of Gaussian Tensors
Andrea Montanari · Daniel Reichman · Ofer Zeitouni
We consider the following detection problem: given a realization of asymmetric matrix $X$ of dimension $n$, distinguish between the hypothesisthat all upper triangular variables are i.i.d. Gaussians variableswith mean 0 and variance $1$ and the hypothesis that there is aplanted principal submatrix $B$ of dimension $L$ for which all upper triangularvariables are i.i.d. Gaussians with mean $1$ and variance $1$, whereasall other upper triangular elements of $X$ not in $B$ are i.i.d.Gaussians variables with mean 0 and variance $1$. We refer to this asthe `Gaussian hidden clique problem'. When $L=( 1 + \epsilon) \sqrt{n}$ ($\epsilon > 0$), it is possible to solve thisdetection problem with probability $1 - o_n(1)$ by computing thespectrum of $X$ and considering the largest eigenvalue of $X$.We prove that when$L < (1-\epsilon)\sqrt{n}$ no algorithm that examines only theeigenvalues of $X$can detect the existence of a hiddenGaussian clique, with error probability vanishing as $n \to \infty$.The result above is an immediate consequence of a more general result on rank-oneperturbations of $k$-dimensional Gaussian tensors.In this context we establish a lower bound on the criticalsignal-to-noise ratio below which a rank-one signal cannot be detected.
Author Information
Andrea Montanari (Stanford)
Daniel Reichman (Cornell University)
Ofer Zeitouni (Weizmann Institute and Courant Institute)
More from the Same Authors
-
2022 Poster: Size and depth of monotone neural networks: interpolation and approximation »
Dan Mikulincer · Daniel Reichman -
2021 Workshop: Workshop on Human and Machine Decisions »
Daniel Reichman · Joshua Peterson · Kiran Tomlinson · Annie Liang · Tom Griffiths -
2021 Poster: Streaming Belief Propagation for Community Detection »
Yuchen Wu · Jakab Tardos · Mohammadhossein Bateni · André Linhares · Filipe Miguel Goncalves de Almeida · Andrea Montanari · Ashkan Norouzi-Fard -
2020 Poster: When Do Neural Networks Outperform Kernel Methods? »
Behrooz Ghorbani · Song Mei · Theodor Misiakiewicz · Andrea Montanari -
2019 Poster: Limitations of Lazy Training of Two-layers Neural Network »
Behrooz Ghorbani · Song Mei · Theodor Misiakiewicz · Andrea Montanari -
2019 Spotlight: Limitations of Lazy Training of Two-layers Neural Network »
Behrooz Ghorbani · Song Mei · Theodor Misiakiewicz · Andrea Montanari -
2018 Poster: Contextual Stochastic Block Models »
Yash Deshpande · Subhabrata Sen · Andrea Montanari · Elchanan Mossel -
2018 Spotlight: Contextual Stochastic Block Models »
Yash Deshpande · Subhabrata Sen · Andrea Montanari · Elchanan Mossel -
2017 Poster: A graph-theoretic approach to multitasking »
Noga Alon · Daniel Reichman · Igor Shinkar · Tal Wagner · Sebastian Musslick · Jonathan D Cohen · Tom Griffiths · Biswadip dey · Kayhan Ozcimder -
2017 Oral: A graph-theoretic approach to multitasking »
Noga Alon · Daniel Reichman · Igor Shinkar · Tal Wagner · Sebastian Musslick · Jonathan D Cohen · Tom Griffiths · Biswadip dey · Kayhan Ozcimder -
2017 Poster: Inference in Graphical Models via Semidefinite Programming Hierarchies »
Murat Erdogdu · Yash Deshpande · Andrea Montanari -
2015 : Information-theoretic bounds on learning network dynamics »
Andrea Montanari -
2015 Poster: Convergence rates of sub-sampled Newton methods »
Murat Erdogdu · Andrea Montanari -
2014 Poster: A statistical model for tensor PCA »
Emile Richard · Andrea Montanari -
2014 Poster: Cone-Constrained Principal Component Analysis »
Yash Deshpande · Andrea Montanari · Emile Richard -
2014 Poster: Sparse PCA via Covariance Thresholding »
Yash Deshpande · Andrea Montanari -
2013 Poster: Estimating LASSO Risk and Noise Level »
Mohsen Bayati · Murat Erdogdu · Andrea Montanari -
2013 Poster: Confidence Intervals and Hypothesis Testing for High-Dimensional Statistical Models »
Adel Javanmard · Andrea Montanari -
2013 Poster: Model Selection for High-Dimensional Regression under the Generalized Irrepresentability Condition »
Adel Javanmard · Andrea Montanari -
2010 Poster: Learning Networks of Stochastic Differential Equations »
José Bento · Morteza Ibrahimi · Andrea Montanari -
2010 Poster: The LASSO risk: asymptotic results and real world examples »
Mohsen Bayati · José Bento · Andrea Montanari -
2009 Poster: Matrix Completion from Noisy Entries »
Raghunandan Keshavan · Andrea Montanari · Sewoong Oh -
2009 Poster: Which graphical models are difficult to learn? »
Andrea Montanari · José Bento