Timezone: »
In recent years, approaches based on machine learning have achieved state-of-the-art performance on image restoration problems. Successful approaches include both generative models of natural images as well as discriminative training of deep neural networks. Discriminative training of feed forward architectures allows explicit control over the computational cost of performing restoration and therefore often leads to better performance at the same cost at run time. In contrast, generative models have the advantage that they can be trained once and then adapted to any image restoration task by a simple use of Bayes' rule. In this paper we show how to combine the strengths of both approaches by training a discriminative, feed-forward architecture to predict the state of latent variables in a generative model of natural images. We apply this idea to the very successful Gaussian Mixture Model (GMM) of natural images. We show that it is possible to achieve comparable performance as the original GMM but with two orders of magnitude improvement in run time while maintaining the advantage of generative models.
Author Information
Dan Rosenbaum (The Hebrew University)
Yair Weiss (Hebrew University)
Yair Weiss is an Associate Professor at the Hebrew University School of Computer Science and Engineering. He received his Ph.D. from MIT working with Ted Adelson on motion analysis and did postdoctoral work at UC Berkeley. Since 2005 he has been a fellow of the Canadian Institute for Advanced Research. With his students and colleagues he has co-authored award winning papers in NIPS (2002),ECCV (2006), UAI (2008) and CVPR (2009).
More from the Same Authors
-
2021 Poster: When Is Unsupervised Disentanglement Possible? »
Daniella Horan · Eitan Richardson · Yair Weiss -
2018 Poster: On GANs and GMMs »
Eitan Richardson · Yair Weiss -
2018 Spotlight: On GANs and GMMs »
Eitan Richardson · Yair Weiss -
2015 Poster: The Return of the Gating Network: Combining Generative Models and Discriminative Training in Natural Image Priors »
Dan Rosenbaum · Yair Weiss -
2013 Poster: Learning the Local Statistics of Optical Flow »
Dan Rosenbaum · Daniel Zoran · Yair Weiss -
2012 Poster: Natural Images, Gaussian Mixtures and Dead Leaves »
Daniel Zoran · Yair Weiss -
2012 Poster: Learning about Canonical Views from Internet Image Collections »
Elad Mezuman · Yair Weiss -
2009 Invited Talk: Learning and Inference in Low-Level Vision »
Yair Weiss -
2009 Poster: Semi-Supervised Learning in Gigantic Image Collections »
Rob Fergus · Yair Weiss · Antonio Torralba -
2009 Oral: Semi-Supervised Learning in Gigantic Image Collections »
Rob Fergus · Yair Weiss · Antonio Torralba -
2009 Poster: The "tree-dependent components" of natural scenes are edge filters »
Daniel Zoran · Yair Weiss -
2008 Poster: Spectral Hashing »
Yair Weiss · Antonio Torralba · Rob Fergus