Timezone: »
In theory, Bayesian nonparametric (BNP) methods are perfectly suited to the modern-day, large data sets that arise in the physical, natural, and social sciences, as well as in technology and the humanities. By making use of infinite-dimensional mathematical structures, Bayesian nonparametric statistics allows the complexity of a learned model to grow as the size of a data set grows---exhibiting desirable Bayesian regularization properties for small data sets and allowing the practitioner to learn ever more from data sets as they become larger.
This flexibility, however, presents both computational and modeling challenges. While there have been recent developments in accelerated inference for Bayesian nonparametric models, many approaches are not appropriate for large datasets. Further, while we have seen a growth in models for applied problems that move beyond the foundational Dirichlet and Gaussian processes, the widespread adoption of BNP methods has been limited in applied fields. In this workshop, we will address the modeling, theoretical, and computational challenges limiting adoption and how they can be circumvented. In particular, we will engage with applications specialists to better understand the best directions for BNP development as a tool for conducting applied research. We will explore computational tools for posterior inference algorithms that address the unique challenges of BNP methods including high/infinite-dimensionality and flexibility: e.g., MCMC, SMC, variational methods, and small-variance asymptotics to name a few. We will also consider the design and implementation of software to perform Bayesian nonparametric analyses, both for detailed use by experts in the field and for automatic use by researchers outside the field.
This workshop will bring together core researchers in BNP across a number of fields (machine learning, statistics, engineering, applied mathematics, etc.) with researchers working in a variety of application domains. We aim to focus on the next generation of BNP research by highlighting the contributions of younger researchers in the BNP community. We anticipate that participants will leave the workshop with (i) a foundation for understanding BNP methods, (ii) a perspective on recent advances in the field via a number of invited and contributed talks as well as poster presentations, and (iii) an idea of the challenges facing the field and future opportunities via talks and a panel discussion featuring experts both within and outside of the BNP community.
Sat 5:30 a.m. - 6:15 a.m.
|
Random Measure Priors and Tractability
(
Talk
)
|
Peter Orbanz 🔗 |
Sat 6:00 a.m. - 6:30 a.m.
|
Non-standard approaches to nonparametric Bayes
(
Talk
)
|
Jeffrey Miller 🔗 |
Sat 6:30 a.m. - 6:45 a.m.
|
Edge-exchangeable graphs, sparsity, and power laws
(
Talk
)
|
Diana Cai 🔗 |
Sat 6:45 a.m. - 7:00 a.m.
|
The general class of (sparse) random graphs arising from exchangeable point processes
(
Talk
)
|
Victor Veitch 🔗 |
Sat 12:30 p.m. - 1:00 p.m.
|
Bayesian Cluster Analysis: Point Estimation and Credible Balls
(
Talk
)
|
Sara Wade 🔗 |
Sat 1:00 p.m. - 1:20 p.m.
|
Mondrian Forests for Large-Scale regression when uncertainty matters
(
Talk
)
|
Balaji Lakshminarayanan 🔗 |
Sat 1:15 p.m. - 1:30 p.m.
|
Parallel Markov Chain Monte Carlo for the Indian Buffet Process
(
Talk
)
|
Michael Zhang 🔗 |
Sat 2:00 p.m. - 2:00 p.m.
|
Large Scale Topic Models & Nonparametric Bayesian Models
(
Talk
)
|
Amr Ahmed 🔗 |
Sat 2:30 p.m. - 3:00 p.m.
|
Modeling the Dynamics of Online Learning Activity
(
Talk
)
|
Isabel Valera 🔗 |
Sat 3:00 p.m. - 3:40 p.m.
|
Looking for what you can't see: exploring subgroups using model-based clustering
(
Talk
)
|
Scott Moser 🔗 |
Author Information
Tamara Broderick (MIT)
Nick Foti (University of Washington)
Aaron Schein (University of Massachusetts Amherst)
Alex Tank (University of Washington)
Hanna Wallach (MSR NYC)
Sinead Williamson (UT Austin)
More from the Same Authors
-
2021 : Measuring the sensitivity of Gaussian processes to kernel choice »
Will Stephenson · Soumya Ghosh · Tin Nguyen · Mikhail Yurochkin · Sameer Deshpande · Tamara Broderick -
2021 Workshop: Your Model is Wrong: Robustness and misspecification in probabilistic modeling »
Diana Cai · Sameer Deshpande · Michael Hughes · Tamara Broderick · Trevor Campbell · Nick Foti · Barbara Engelhardt · Sinead Williamson -
2021 Workshop: Learning Meaningful Representations of Life (LMRL) »
Elizabeth Wood · Adji Bousso Dieng · Aleksandrina Goeva · Anshul Kundaje · Barbara Engelhardt · Chang Liu · David Van Valen · Debora Marks · Edward Boyden · Eli N Weinstein · Lorin Crawford · Mor Nitzan · Romain Lopez · Tamara Broderick · Ray Jones · Wouter Boomsma · Yixin Wang -
2021 Panel: How Should a Machine Learning Researcher Think About AI Ethics? »
Amanda Askell · Abeba Birhane · Jesse Dodge · Casey Fiesler · Pascale N Fung · Hanna Wallach -
2021 Poster: Can we globally optimize cross-validation loss? Quasiconvexity in ridge regression »
Will Stephenson · Zachary Frangella · Madeleine Udell · Tamara Broderick -
2021 Poster: For high-dimensional hierarchical models, consider exchangeability of effects across covariates instead of across datasets »
Brian Trippe · Hilary Finucane · Tamara Broderick -
2020 : Panel & Closing »
Tamara Broderick · Laurent Dinh · Neil Lawrence · Kristian Lum · Hanna Wallach · Sinead Williamson -
2020 : Morning keynote »
Hanna Wallach · Rosie Campbell -
2020 Workshop: I Can’t Believe It’s Not Better! Bridging the gap between theory and empiricism in probabilistic machine learning »
Jessica Forde · Francisco Ruiz · Melanie Fernandez Pradier · Aaron Schein · Finale Doshi-Velez · Isabel Valera · David Blei · Hanna Wallach -
2020 : Tamara Broderick »
Tamara Broderick -
2020 Poster: Approximate Cross-Validation for Structured Models »
Soumya Ghosh · Will Stephenson · Tin Nguyen · Sameer Deshpande · Tamara Broderick -
2020 Poster: Approximate Cross-Validation with Low-Rank Data in High Dimensions »
Will Stephenson · Madeleine Udell · Tamara Broderick -
2019 Poster: Poisson-Randomized Gamma Dynamical Systems »
Aaron Schein · Scott Linderman · Mingyuan Zhou · David Blei · Hanna Wallach -
2018 : Research Panel »
Sinead Williamson · Barbara Engelhardt · Tom Griffiths · Neil Lawrence · Hanna Wallach -
2018 : Panel on research process »
Zachary Lipton · Charles Sutton · Finale Doshi-Velez · Hanna Wallach · Suchi Saria · Rich Caruana · Thomas Rainforth -
2018 : Hanna Wallach - Improving Fairness in Machine Learning Systems: What Do Industry Practitioners Need? »
Hanna Wallach -
2018 Workshop: All of Bayesian Nonparametrics (Especially the Useful Bits) »
Diana Cai · Trevor Campbell · Michael Hughes · Tamara Broderick · Nick Foti · Sinead Williamson -
2017 : An Efficient ADMM Algorithm for Structural Break Detection in Multivariate Time Series. Alex Tank, Emily Fox and Ali Shojaie. »
Alex Tank -
2017 : Poster spotlights »
Hiroshi Kuwajima · Masayuki Tanaka · Qingkai Liang · Matthieu Komorowski · Fanyu Que · Thalita F Drumond · Aniruddh Raghu · Leo Anthony Celi · Christina Göpfert · Andrew Ross · Sarah Tan · Rich Caruana · Yin Lou · Devinder Kumar · Graham Taylor · Forough Poursabzi-Sangdeh · Jennifer Wortman Vaughan · Hanna Wallach -
2017 Workshop: Advances in Approximate Bayesian Inference »
Francisco Ruiz · Stephan Mandt · Cheng Zhang · James McInerney · James McInerney · Dustin Tran · Dustin Tran · David Blei · Max Welling · Tamara Broderick · Michalis Titsias -
2017 Poster: PASS-GLM: polynomial approximate sufficient statistics for scalable Bayesian GLM inference »
Jonathan Huggins · Ryan Adams · Tamara Broderick -
2017 Spotlight: PASS-GLM: polynomial approximate sufficient statistics for scalable Bayesian GLM inference »
Jonathan Huggins · Ryan Adams · Tamara Broderick -
2017 Poster: Reducing Reparameterization Gradient Variance »
Andrew Miller · Nick Foti · Alexander D'Amour · Ryan Adams -
2016 : Beta Tucker decomposition for DNA methylation data. »
Aaron Schein -
2016 : Tamara Broderick: Foundations Talk »
Tamara Broderick -
2016 Workshop: Advances in Approximate Bayesian Inference »
Tamara Broderick · Stephan Mandt · James McInerney · Dustin Tran · David Blei · Kevin Murphy · Andrew Gelman · Michael I Jordan -
2016 Workshop: Practical Bayesian Nonparametrics »
Nick Foti · Tamara Broderick · Trevor Campbell · Michael Hughes · Jeffrey Miller · Aaron Schein · Sinead Williamson · Yanxun Xu -
2016 Poster: Poisson-Gamma dynamical systems »
Aaron Schein · Hanna Wallach · Mingyuan Zhou -
2016 Oral: Poisson-Gamma dynamical systems »
Aaron Schein · Hanna Wallach · Mingyuan Zhou -
2016 Poster: Coresets for Scalable Bayesian Logistic Regression »
Jonathan Huggins · Trevor Campbell · Tamara Broderick -
2016 Poster: Flexible Models for Microclustering with Application to Entity Resolution »
Brenda Betancourt · Giacomo Zanella · Jeffrey Miller · Hanna Wallach · Abbas Zaidi · Beka Steorts -
2016 Poster: Edge-exchangeable graphs and sparsity »
Diana Cai · Trevor Campbell · Tamara Broderick -
2015 Workshop: Advances in Approximate Bayesian Inference »
Dustin Tran · Tamara Broderick · Stephan Mandt · James McInerney · Shakir Mohamed · Alp Kucukelbir · Matthew D. Hoffman · Neil Lawrence · David Blei -
2015 Poster: Linear Response Methods for Accurate Covariance Estimates from Mean Field Variational Bayes »
Ryan Giordano · Tamara Broderick · Michael Jordan -
2015 Spotlight: Linear Response Methods for Accurate Covariance Estimates from Mean Field Variational Bayes »
Ryan Giordano · Tamara Broderick · Michael Jordan -
2014 Workshop: Advances in Variational Inference »
David Blei · Shakir Mohamed · Michael Jordan · Charles Blundell · Tamara Broderick · Matthew D. Hoffman -
2014 Poster: Stochastic variational inference for hidden Markov models »
Nick Foti · Jason Xu · Dillon Laird · Emily Fox -
2013 Workshop: Topic Models: Computation, Application, and Evaluation »
David Mimno · Amr Ahmed · Jordan Boyd-Graber · Ankur Moitra · Hanna Wallach · Alexander Smola · David Blei · Anima Anandkumar -
2013 Poster: Optimistic Concurrency Control for Distributed Unsupervised Learning »
Xinghao Pan · Joseph Gonzalez · Stefanie Jegelka · Tamara Broderick · Michael Jordan -
2013 Poster: Restricting exchangeable nonparametric distributions »
Sinead Williamson · Steven MacEachern · Eric Xing -
2013 Spotlight: Restricting exchangeable nonparametric distributions »
Sinead Williamson · Steven MacEachern · Eric Xing -
2013 Poster: Streaming Variational Bayes »
Tamara Broderick · Nicholas Boyd · Andre Wibisono · Ashia C Wilson · Michael Jordan -
2012 Poster: Topic-Partitioned Multinetwork Embeddings »
Peter Krafft · Juston S Moore · Hanna Wallach · Bruce Desmarais -
2012 Poster: Slice sampling normalized kernel-weighted completely random measure mixture models »
Nick Foti · Sinead Williamson -
2011 Workshop: 2nd Workshop on Computational Social Science and the Wisdom of Crowds »
Winter Mason · Jennifer Wortman Vaughan · Hanna Wallach -
2010 Workshop: Computational Social Science and the Wisdom of Crowds »
Jennifer Wortman Vaughan · Hanna Wallach -
2009 Workshop: Applications for Topic Models: Text and Beyond »
David Blei · Jordan Boyd-Graber · Jonathan Chang · Katherine Heller · Hanna Wallach -
2009 Poster: Rethinking LDA: Why Priors Matter »
Hanna Wallach · David Mimno · Andrew McCallum -
2009 Spotlight: Rethinking LDA: Why Priors Matter »
Hanna Wallach · David Mimno · Andrew McCallum