Timezone: »
A basic problem in the design of privacy-preserving algorithms is the \emph{private maximization problem}: the goal is to pick an item from a universe that (approximately) maximizes a data-dependent function, all under the constraint of differential privacy. This problem has been used as a sub-routine in many privacy-preserving algorithms for statistics and machine learning. Previous algorithms for this problem are either range-dependent---i.e., their utility diminishes with the size of the universe---or only apply to very restricted function classes. This work provides the first general purpose, range-independent algorithm for private maximization that guarantees approximate differential privacy. Its applicability is demonstrated on two fundamental tasks in data mining and machine learning.
Author Information
Kamalika Chaudhuri (UCSD)
Daniel Hsu (Columbia University)
See <https://www.cs.columbia.edu/~djhsu/>
Shuang Song (Google)
More from the Same Authors
-
2020 : Biased Programmers? Or Biased Data? A Field Experiment in Operationalizing AI Ethics »
Bo Cowgill · Fabrizio Dell'Acqua · Augustin Chaintreau · Nakul Verma · Samuel Deng · Daniel Hsu -
2021 Spotlight: Bayesian decision-making under misspecified priors with applications to meta-learning »
Max Simchowitz · Christopher Tosh · Akshay Krishnamurthy · Daniel Hsu · Thodoris Lykouris · Miro Dudik · Robert Schapire -
2022 : The Interpolated MVU Mechanism For Communication-efficient Private Federated Learning »
Chuan Guo · Kamalika Chaudhuri · Pierre STOCK · Mike Rabbat -
2022 : Forgetting Data from Pre-trained GANs »
Zhifeng Kong · Kamalika Chaudhuri -
2022 : Panel Discussion »
Kamalika Chaudhuri · Been Kim · Dorsa Sadigh · Huan Zhang · Linyi Li -
2022 : Invited Talk: Kamalika Chaudhuri »
Kamalika Chaudhuri -
2022 Poster: Masked Prediction: A Parameter Identifiability View »
Bingbin Liu · Daniel Hsu · Pradeep Ravikumar · Andrej Risteski -
2021 Workshop: Privacy in Machine Learning (PriML) 2021 »
Yu-Xiang Wang · Borja Balle · Giovanni Cherubin · Kamalika Chaudhuri · Antti Honkela · Jonathan Lebensold · Casey Meehan · Mi Jung Park · Adrian Weller · Yuqing Zhu -
2021 Poster: Understanding Instance-based Interpretability of Variational Auto-Encoders »
Zhifeng Kong · Kamalika Chaudhuri -
2021 Poster: Support vector machines and linear regression coincide with very high-dimensional features »
Navid Ardeshir · Clayton Sanford · Daniel Hsu -
2021 Poster: Consistent Non-Parametric Methods for Maximizing Robustness »
Robi Bhattacharjee · Kamalika Chaudhuri -
2021 Poster: Bayesian decision-making under misspecified priors with applications to meta-learning »
Max Simchowitz · Christopher Tosh · Akshay Krishnamurthy · Daniel Hsu · Thodoris Lykouris · Miro Dudik · Robert Schapire -
2020 Workshop: Privacy Preserving Machine Learning - PriML and PPML Joint Edition »
Borja Balle · James Bell · AurĂ©lien Bellet · Kamalika Chaudhuri · Adria Gascon · Antti Honkela · Antti Koskela · Casey Meehan · Olga Ohrimenko · Mi Jung Park · Mariana Raykova · Mary Anne Smart · Yu-Xiang Wang · Adrian Weller -
2020 Poster: Ensuring Fairness Beyond the Training Data »
Debmalya Mandal · Samuel Deng · Suman Jana · Jeannette Wing · Daniel Hsu -
2020 Poster: A Closer Look at Accuracy vs. Robustness »
Yao-Yuan Yang · Cyrus Rashtchian · Hongyang Zhang · Russ Salakhutdinov · Kamalika Chaudhuri -
2019 : Audrey Durand, Douwe Kiela, Kamalika Chaudhuri moderated by Yann Dauphin »
Audrey Durand · Kamalika Chaudhuri · Yann Dauphin · Orhan Firat · Dilan Gorur · Douwe Kiela -
2019 : Kamalika Chaudhuri - A Three Sample Test to Detect Data Copying in Generative Models »
Kamalika Chaudhuri -
2019 Workshop: Privacy in Machine Learning (PriML) »
Borja Balle · Kamalika Chaudhuri · Antti Honkela · Antti Koskela · Casey Meehan · Mi Jung Park · Mary Anne Smart · Mary Anne Smart · Adrian Weller -
2019 Poster: The Label Complexity of Active Learning from Observational Data »
Songbai Yan · Kamalika Chaudhuri · Tara Javidi -
2019 Poster: On the number of variables to use in principal component regression »
Ji Xu · Daniel Hsu -
2019 Poster: Capacity Bounded Differential Privacy »
Kamalika Chaudhuri · Jacob Imola · Ashwin Machanavajjhala -
2018 : Invited talk 3: Challenges in the Privacy-Preserving Analysis of Structured Data »
Kamalika Chaudhuri -
2018 : Plenary Talk 2 »
Kamalika Chaudhuri -
2018 Workshop: Workshop on Security in Machine Learning »
Nicolas Papernot · Jacob Steinhardt · Matt Fredrikson · Kamalika Chaudhuri · Florian Tramer -
2018 Poster: Overfitting or perfect fitting? Risk bounds for classification and regression rules that interpolate »
Mikhail Belkin · Daniel Hsu · Partha P Mitra -
2018 Poster: Benefits of over-parameterization with EM »
Ji Xu · Daniel Hsu · Arian Maleki -
2018 Poster: Leveraged volume sampling for linear regression »
Michal Derezinski · Manfred K. Warmuth · Daniel Hsu -
2018 Spotlight: Leveraged volume sampling for linear regression »
Michal Derezinski · Manfred K. Warmuth · Daniel Hsu -
2017 : Analyzing Robustness of Nearest Neighbors to Adversarial Examples »
Kamalika Chaudhuri -
2017 Poster: Renyi Differential Privacy Mechanisms for Posterior Sampling »
Joseph Geumlek · Shuang Song · Kamalika Chaudhuri -
2017 Poster: Approximation and Convergence Properties of Generative Adversarial Learning »
Shuang Liu · Olivier Bousquet · Kamalika Chaudhuri -
2017 Spotlight: Approximation and Convergence Properties of Generative Adversarial Learning »
Shuang Liu · Olivier Bousquet · Kamalika Chaudhuri -
2017 Poster: Linear regression without correspondence »
Daniel Hsu · Kevin Shi · Xiaorui Sun -
2017 Tutorial: Differentially Private Machine Learning: Theory, Algorithms and Applications »
Kamalika Chaudhuri · Anand D Sarwate -
2016 Poster: Global Analysis of Expectation Maximization for Mixtures of Two Gaussians »
Ji Xu · Daniel Hsu · Arian Maleki -
2016 Oral: Global Analysis of Expectation Maximization for Mixtures of Two Gaussians »
Ji Xu · Daniel Hsu · Arian Maleki -
2016 Poster: Active Learning from Imperfect Labelers »
Songbai Yan · Kamalika Chaudhuri · Tara Javidi -
2016 Poster: Search Improves Label for Active Learning »
Alina Beygelzimer · Daniel Hsu · John Langford · Chicheng Zhang -
2015 : Kamalika Chaudhuri »
Kamalika Chaudhuri -
2015 Workshop: Non-convex Optimization for Machine Learning: Theory and Practice »
Anima Anandkumar · Niranjan Uma Naresh · Kamalika Chaudhuri · Percy Liang · Sewoong Oh -
2015 Poster: Active Learning from Weak and Strong Labelers »
Chicheng Zhang · Kamalika Chaudhuri -
2015 Poster: Mixing Time Estimation in Reversible Markov Chains from a Single Sample Path »
Daniel Hsu · Aryeh Kontorovich · Csaba Szepesvari -
2015 Poster: Efficient and Parsimonious Agnostic Active Learning »
Tzu-Kuo Huang · Alekh Agarwal · Daniel Hsu · John Langford · Robert Schapire -
2015 Spotlight: Efficient and Parsimonious Agnostic Active Learning »
Tzu-Kuo Huang · Alekh Agarwal · Daniel Hsu · John Langford · Robert Schapire -
2015 Poster: Spectral Learning of Large Structured HMMs for Comparative Epigenomics »
Chicheng Zhang · Jimin Song · Kamalika Chaudhuri · Kevin Chen -
2015 Poster: Convergence Rates of Active Learning for Maximum Likelihood Estimation »
Kamalika Chaudhuri · Sham Kakade · Praneeth Netrapalli · Sujay Sanghavi -
2014 Poster: Beyond Disagreement-Based Agnostic Active Learning »
Chicheng Zhang · Kamalika Chaudhuri -
2014 Poster: Rates of Convergence for Nearest Neighbor Classification »
Kamalika Chaudhuri · Sanjoy Dasgupta -
2014 Spotlight: Beyond Disagreement-Based Agnostic Active Learning »
Chicheng Zhang · Kamalika Chaudhuri -
2014 Spotlight: Rates of Convergence for Nearest Neighbor Classification »
Kamalika Chaudhuri · Sanjoy Dasgupta -
2014 Poster: Scalable Non-linear Learning with Adaptive Polynomial Expansions »
Alekh Agarwal · Alina Beygelzimer · Daniel Hsu · John Langford · Matus J Telgarsky -
2013 Workshop: Workshop on Spectral Learning »
Byron Boots · Daniel Hsu · Borja Balle -
2013 Poster: When are Overcomplete Topic Models Identifiable? Uniqueness of Tensor Tucker Decompositions with Structured Sparsity »
Anima Anandkumar · Daniel Hsu · Majid Janzamin · Sham M Kakade -
2013 Poster: Contrastive Learning Using Spectral Methods »
James Y Zou · Daniel Hsu · David Parkes · Ryan Adams -
2013 Poster: A Stability-based Validation Procedure for Differentially Private Machine Learning »
Kamalika Chaudhuri · Staal A Vinterbo -
2012 Poster: Learning Mixtures of Tree Graphical Models »
Anima Anandkumar · Daniel Hsu · Furong Huang · Sham M Kakade -
2012 Poster: A Spectral Algorithm for Latent Dirichlet Allocation »
Anima Anandkumar · Dean P Foster · Daniel Hsu · Sham M Kakade · Yi-Kai Liu -
2012 Poster: Identifiability and Unmixing of Latent Parse Trees »
Percy Liang · Sham M Kakade · Daniel Hsu -
2012 Spotlight: A Spectral Algorithm for Latent Dirichlet Allocation »
Anima Anandkumar · Dean P Foster · Daniel Hsu · Sham M Kakade · Yi-Kai Liu -
2012 Poster: Near-optimal Differentially Private Principal Components »
Kamalika Chaudhuri · Anand D Sarwate · Kaushik Sinha -
2011 Poster: Stochastic convex optimization with bandit feedback »
Alekh Agarwal · Dean P Foster · Daniel Hsu · Sham M Kakade · Sasha Rakhlin -
2011 Poster: Spectral Methods for Learning Multivariate Latent Tree Structure »
Anima Anandkumar · Kamalika Chaudhuri · Daniel Hsu · Sham M Kakade · Le Song · Tong Zhang -
2010 Poster: Rates of convergence for the cluster tree »
Kamalika Chaudhuri · Sanjoy Dasgupta -
2010 Poster: Agnostic Active Learning Without Constraints »
Alina Beygelzimer · Daniel Hsu · John Langford · Tong Zhang -
2009 Poster: A Parameter-free Hedging Algorithm »
Kamalika Chaudhuri · Yoav Freund · Daniel Hsu -
2009 Poster: Multi-Label Prediction via Compressed Sensing »
Daniel Hsu · Sham M Kakade · John Langford · Tong Zhang -
2009 Oral: Multi-Label Prediction via Compressed Sensing »
Daniel Hsu · Sham M Kakade · John Langford · Tong Zhang -
2008 Poster: Privacy-preserving logistic regression »
Kamalika Chaudhuri · Claire Monteleoni -
2007 Spotlight: A general agnostic active learning algorithm »
Sanjoy Dasgupta · Daniel Hsu · Claire Monteleoni -
2007 Poster: A general agnostic active learning algorithm »
Sanjoy Dasgupta · Daniel Hsu · Claire Monteleoni