Timezone: »
Poster
Structure learning of antiferromagnetic Ising models
Guy Bresler · David Gamarnik · Devavrat Shah
In this paper we investigate the computational complexity of learning the graph structure underlying a discrete undirected graphical model from i.i.d. samples. Our first result is an unconditional computational lower bound of $\Omega (p^{d/2})$ for learning general graphical models on $p$ nodes of maximum degree $d$, for the class of statistical algorithms recently introduced by Feldman et al. The construction is related to the notoriously difficult learning parities with noise problem in computational learning theory. Our lower bound shows that the $\widetilde O(p^{d+2})$ runtime required by Bresler, Mossel, and Sly's exhaustivesearch algorithm cannot be significantly improved without restricting the class of models. Aside from structural assumptions on the graph such as it being a tree, hypertree, treelike, etc., most recent papers on structure learning assume that the model has the correlation decay property. Indeed, focusing on ferromagnetic Ising models, Bento and Montanari showed that all known lowcomplexity algorithms fail to learn simple graphs when the interaction strength exceeds a number related to the correlation decay threshold. Our second set of results gives a class of repelling (antiferromagnetic) models that have the \emph{opposite} behavior: very strong repelling allows efficient learning in time $\widetilde O(p^2)$. We provide an algorithm whose performance interpolates between $\widetilde O(p^2)$ and $\widetilde O(p^{d+2})$ depending on the strength of the repulsion.
Author Information
Guy Bresler (Massachusetts Institute of Technology)
David Gamarnik (Massachusetts Institute of Technology)
Devavrat Shah (Massachusetts Institute of Technology)
Devavrat Shah is a professor of Electrical Engineering & Computer Science and Director of Statistics and Data Science at MIT. He received PhD in Computer Science from Stanford. He received Erlang Prize from Applied Probability Society of INFORMS in 2010 and NeuIPS best paper award in 2008.
More from the Same Authors

2019 Poster: On Robustness of Principal Component Regression »
Anish Agarwal · Devavrat Shah · Dennis Shen · Dogyoon Song 
2019 Oral: On Robustness of Principal Component Regression »
Anish Agarwal · Devavrat Shah · Dennis Shen · Dogyoon Song 
2019 Poster: Sparse HighDimensional Isotonic Regression »
David Gamarnik · Julia Gaudio 
2019 Tutorial: Synthetic Control »
Alberto Abadie · Vishal Misra · Devavrat Shah 
2018 Poster: Qlearning with Nearest Neighbors »
Devavrat Shah · Qiaomin Xie 
2018 Poster: High Dimensional Linear Regression using Lattice Basis Reduction »
Ilias Zadik · David Gamarnik 
2017 Workshop: Nearest Neighbors for Modern Applications with Massive Data: An Ageold Solution with New Challenges »
George H Chen · Devavrat Shah · Christina Lee 
2017 Poster: Thy Friend is My Friend: Iterative Collaborative Filtering for Sparse Matrix Estimation »
Christian Borgs · Jennifer Chayes · Christina Lee · Devavrat Shah 
2016 Poster: Blind Regression: Nonparametric Regression for Latent Variable Models via Collaborative Filtering »
Dogyoon Song · Christina Lee · Yihua Li · Devavrat Shah 
2014 Workshop: Analysis of Rank Data: Confluence of Social Choice, Operations Research, and Machine Learning »
Shivani Agarwal · Hossein Azari Soufiani · Guy Bresler · Sewoong Oh · David Parkes · Arun Rajkumar · Devavrat Shah 
2014 Poster: Hardness of parameter estimation in graphical models »
Guy Bresler · David Gamarnik · Devavrat Shah 
2014 Poster: A Latent Source Model for Online Collaborative Filtering »
Guy Bresler · George H Chen · Devavrat Shah 
2014 Spotlight: A Latent Source Model for Online Collaborative Filtering »
Guy Bresler · George H Chen · Devavrat Shah 
2014 Poster: Learning Mixed Multinomial Logit Model from Ordinal Data »
Sewoong Oh · Devavrat Shah 
2013 Workshop: Crowdsourcing: Theory, Algorithms and Applications »
Jennifer Wortman Vaughan · Greg Stoddard · ChienJu Ho · Adish Singla · Michael Bernstein · Devavrat Shah · Arpita Ghosh · Evgeniy Gabrilovich · Denny Zhou · Nikhil Devanur · Xi Chen · Alexander Ihler · Qiang Liu · Genevieve Patterson · Ashwinkumar Badanidiyuru Varadaraja · Hossein Azari Soufiani · Jacob Whitehill 
2013 Poster: A Latent Source Model for Nonparametric Time Series Classification »
George H Chen · Stanislav Nikolov · Devavrat Shah 
2013 Poster: Computing the Stationary Distribution Locally »
Christina Lee · Asuman Ozdaglar · Devavrat Shah 
2012 Poster: Iterative ranking from pairwise comparisons »
Sahand N Negahban · Sewoong Oh · Devavrat Shah 
2012 Spotlight: Iterative ranking from pairwise comparisons »
Sahand N Negahban · Sewoong Oh · Devavrat Shah 
2011 Poster: Iterative Learning for Reliable Crowdsourcing Systems »
David R Karger · Sewoong Oh · Devavrat Shah 
2011 Oral: Iterative Learning for Reliable Crowdsourcing Systems »
David R Karger · Sewoong Oh · Devavrat Shah 
2009 Poster: A DataDriven Approach to Modeling Choice »
Vivek Farias · Srikanth Jagabathula · Devavrat Shah 
2009 Spotlight: A DataDriven Approach to Modeling Choice »
Vivek Farias · Srikanth Jagabathula · Devavrat Shah 
2009 Poster: Local Rules for Global MAP: When Do They Work ? »
Kyomin Jung · Pushmeet Kohli · Devavrat Shah 
2008 Poster: Inferring rankings under constrained sensing »
Srikanth Jagabathula · Devavrat Shah 
2008 Oral: Inferring rankings under constrained sensing »
Srikanth Jagabathula · Devavrat Shah 
2007 Spotlight: Message Passing for Maxweight Independent Set »
Sujay Sanghavi · Devavrat Shah · Alan S Willsky 
2007 Poster: Message Passing for Maxweight Independent Set »
Sujay Sanghavi · Devavrat Shah · Alan S Willsky 
2007 Poster: Local Algorithms for Approximate Inference in MinorExcluded Graphs »
Kyomin Jung · Devavrat Shah