Timezone: »
Poster
Sparse PCA via Covariance Thresholding
Yash Deshpande · Andrea Montanari
In sparse principal component analysis we are given noisy observations of a low-rank matrix of dimension $n\times p$ and seek to reconstruct it under additional sparsity assumptions. In particular, we assume here that the principal components $\bv_1,\dots,\bv_r$ have at most $k_1, \cdots, k_q$ non-zero entries respectively, and study the high-dimensional regime in which $p$ is of the same order as $n$. In an influential paper, Johnstone and Lu \cite{johnstone2004sparse} introduced a simple algorithm that estimates the support of the principal vectors $\bv_1,\dots,\bv_r$ by the largest entries in the diagonal of the empirical covariance. This method can be shown to succeed with high probability if $k_q \le C_1\sqrt{n/\log p}$, and to fail with high probability if $k_q\ge C_2 \sqrt{n/\log p}$ for two constants $0 < C_1,C_2 < \infty$. Despite a considerable amount of work over the last ten years, no practical algorithm exists with provably better support recovery guarantees. Here we analyze a covariance thresholding algorithm that was recently proposed by Krauthgamer, Nadler and Vilenchik \cite{KrauthgamerSPCA}. We confirm empirical evidence presented by these authors and rigorously prove that the algorithm succeeds with high probability for $k$ of order $\sqrt{n}$. Recent conditional lower bounds \cite{berthet2013computational} suggest that it might be impossible to do significantly better. The key technical component of our analysis develops new bounds on the norm of kernel random matrices, in regimes that were not considered before.
Author Information
Yash Deshpande (Massachusetts Institute of Technology)
Andrea Montanari (Stanford)
More from the Same Authors
-
2021 Poster: Streaming Belief Propagation for Community Detection »
Yuchen Wu · Jakab Tardos · Mohammadhossein Bateni · André Linhares · Filipe Miguel Goncalves de Almeida · Andrea Montanari · Ashkan Norouzi-Fard -
2020 Poster: When Do Neural Networks Outperform Kernel Methods? »
Behrooz Ghorbani · Song Mei · Theodor Misiakiewicz · Andrea Montanari -
2019 Poster: Limitations of Lazy Training of Two-layers Neural Network »
Behrooz Ghorbani · Song Mei · Theodor Misiakiewicz · Andrea Montanari -
2019 Spotlight: Limitations of Lazy Training of Two-layers Neural Network »
Behrooz Ghorbani · Song Mei · Theodor Misiakiewicz · Andrea Montanari -
2018 Poster: Contextual Stochastic Block Models »
Yash Deshpande · Subhabrata Sen · Andrea Montanari · Elchanan Mossel -
2018 Spotlight: Contextual Stochastic Block Models »
Yash Deshpande · Subhabrata Sen · Andrea Montanari · Elchanan Mossel -
2017 : Poster session »
Abbas Zaidi · Christoph Kurz · David Heckerman · YiJyun Lin · Stefan Riezler · Ilya Shpitser · Songbai Yan · Olivier Goudet · Yash Deshpande · Judea Pearl · Jovana Mitrovic · Brian Vegetabile · Tae Hwy Lee · Karen Sachs · Karthika Mohan · Reagan Rose · Julius Ramakers · Negar Hassanpour · Pierre Baldi · Razieh Nabi · Noah Hammarlund · Eli Sherman · Carolin Lawrence · Fattaneh Jabbari · Vira Semenova · Maria Dimakopoulou · Pratik Gajane · Russell Greiner · Ilias Zadik · Alexander Blocker · Hao Xu · Tal EL HAY · Tony Jebara · Benoit Rostykus -
2017 Poster: Inference in Graphical Models via Semidefinite Programming Hierarchies »
Murat Erdogdu · Yash Deshpande · Andrea Montanari -
2015 : Information-theoretic bounds on learning network dynamics »
Andrea Montanari -
2015 Poster: Convergence rates of sub-sampled Newton methods »
Murat Erdogdu · Andrea Montanari -
2015 Poster: On the Limitation of Spectral Methods: From the Gaussian Hidden Clique Problem to Rank-One Perturbations of Gaussian Tensors »
Andrea Montanari · Daniel Reichman · Ofer Zeitouni -
2014 Poster: A statistical model for tensor PCA »
Emile Richard · Andrea Montanari -
2014 Poster: Cone-Constrained Principal Component Analysis »
Yash Deshpande · Andrea Montanari · Emile Richard -
2013 Poster: Estimating LASSO Risk and Noise Level »
Mohsen Bayati · Murat Erdogdu · Andrea Montanari -
2013 Poster: Confidence Intervals and Hypothesis Testing for High-Dimensional Statistical Models »
Adel Javanmard · Andrea Montanari -
2013 Poster: Model Selection for High-Dimensional Regression under the Generalized Irrepresentability Condition »
Adel Javanmard · Andrea Montanari -
2010 Poster: Learning Networks of Stochastic Differential Equations »
José Bento · Morteza Ibrahimi · Andrea Montanari -
2010 Poster: The LASSO risk: asymptotic results and real world examples »
Mohsen Bayati · José Bento · Andrea Montanari -
2009 Poster: Matrix Completion from Noisy Entries »
Raghunandan Keshavan · Andrea Montanari · Sewoong Oh -
2009 Poster: Which graphical models are difficult to learn? »
Andrea Montanari · José Bento