Timezone: »
Poster
Sparse Multi-Task Reinforcement Learning
Daniele Calandriello · Alessandro Lazaric · Marcello Restelli
In multi-task reinforcement learning (MTRL), the objective is to simultaneously learn multiple tasks and exploit their similarity to improve the performance w.r.t.\ single-task learning. In this paper we investigate the case when all the tasks can be accurately represented in a linear approximation space using the same small subset of the original (large) set of features. This is equivalent to assuming that the weight vectors of the task value functions are \textit{jointly sparse}, i.e., the set of their non-zero components is small and it is shared across tasks. Building on existing results in multi-task regression, we develop two multi-task extensions of the fitted $Q$-iteration algorithm. While the first algorithm assumes that the tasks are jointly sparse in the given representation, the second one learns a transformation of the features in the attempt of finding a more sparse representation. For both algorithms we provide a sample complexity analysis and numerical simulations.
Author Information
Daniele Calandriello (DeepMind)
Alessandro Lazaric (Facebook Artificial Intelligence Research)
Marcello Restelli (Politecnico di Milano)
More from the Same Authors
-
2017 Poster: Regret Minimization in MDPs with Options without Prior Knowledge »
Ronan Fruit · Matteo Pirotta · Alessandro Lazaric · Emma Brunskill -
2017 Poster: Efficient Second-Order Online Kernel Learning with Adaptive Embedding »
Daniele Calandriello · Alessandro Lazaric · Michal Valko -
2017 Spotlight: Regret Minimization in MDPs with Options without Prior Knowledge »
Ronan Fruit · Matteo Pirotta · Alessandro Lazaric · Emma Brunskill -
2014 Workshop: Second Workshop on Transfer and Multi-Task Learning: Theory meets Practice »
Urun Dogan · Tatiana Tommasi · Yoshua Bengio · Francesco Orabona · Marius Kloft · Andres Munoz · Gunnar Rätsch · Hal Daumé III · Mehryar Mohri · Xuezhi Wang · Daniel Hernández-lobato · Song Liu · Thomas Unterthiner · Pascal Germain · Vinay P Namboodiri · Michael Goetz · Christopher Berlind · Sigurd Spieckermann · Marta Soare · Yujia Li · Vitaly Kuznetsov · Wenzhao Lian · Daniele Calandriello · Emilie Morvant -
2014 Poster: Exploiting easy data in online optimization »
Amir Sani · Gergely Neu · Alessandro Lazaric -
2014 Poster: Best-Arm Identification in Linear Bandits »
Marta Soare · Alessandro Lazaric · Remi Munos -
2014 Spotlight: Exploiting easy data in online optimization »
Amir Sani · Gergely Neu · Alessandro Lazaric -
2013 Poster: Adaptive Step-Size for Policy Gradient Methods »
Matteo Pirotta · Marcello Restelli · Luca Bascetta -
2012 Poster: Best Arm Identification: A Unified Approach to Fixed Budget and Fixed Confidence »
Victor Gabillon · Mohammad Ghavamzadeh · Alessandro Lazaric -
2012 Poster: Risk-Aversion in Multi-armed Bandits »
Amir Sani · Alessandro Lazaric · Remi Munos -
2011 Poster: Multi-Bandit Best Arm Identification »
Victor Gabillon · Mohammad Ghavamzadeh · Alessandro Lazaric · Sebastien Bubeck -
2011 Poster: Transfer from Multiple MDPs »
Alessandro Lazaric · Marcello Restelli -
2010 Spotlight: LSTD with Random Projections »
Mohammad Ghavamzadeh · Alessandro Lazaric · Odalric-Ambrym Maillard · Remi Munos -
2010 Poster: LSTD with Random Projections »
Mohammad Ghavamzadeh · Alessandro Lazaric · Odalric-Ambrym Maillard · Remi Munos -
2007 Spotlight: Reinforcement Learning in Continuous Action Spaces through Sequential Monte Carlo Methods »
Alessandro Lazaric · Marcello Restelli · Andrea Bonarini -
2007 Poster: Reinforcement Learning in Continuous Action Spaces through Sequential Monte Carlo Methods »
Alessandro Lazaric · Marcello Restelli · Andrea Bonarini