Timezone: »
We propose a new framework for how to use sequential Monte Carlo (SMC) algorithms for inference in probabilistic graphical models (PGM). Via a sequential decomposition of the PGM we find a sequence of auxiliary distributions defined on a monotonically increasing sequence of probability spaces. By targeting these auxiliary distributions using SMC we are able to approximate the full joint distribution defined by the PGM. One of the key merits of the SMC sampler is that it provides an unbiased estimate of the partition function of the model. We also show how it can be used within a particle Markov chain Monte Carlo framework in order to construct high-dimensional block-sampling algorithms for general PGMs.
Author Information
Christian Andersson Naesseth (Linköping University)
Fredrik Lindsten (Linköping University)
Thomas Schön (Uppsala University)
More from the Same Authors
-
2023 Poster: Regularization properties of adversarially-trained linear regression »
Antonio Ribeiro · Dave Zachariah · Francis Bach · Thomas Schön -
2019 Poster: Robust exploration in linear quadratic reinforcement learning »
Jack Umenberger · Mina Ferizbegovic · Thomas Schön · Håkan Hjalmarsson -
2019 Spotlight: Robust exploration in linear quadratic reinforcement learning »
Jack Umenberger · Mina Ferizbegovic · Thomas Schön · Håkan Hjalmarsson -
2018 Poster: Learning convex bounds for linear quadratic control policy synthesis »
Jack Umenberger · Thomas Schön -
2018 Spotlight: Learning convex bounds for linear quadratic control policy synthesis »
Jack Umenberger · Thomas Schön -
2017 Poster: Linearly constrained Gaussian processes »
Carl Jidling · Niklas Wahlström · Adrian Wills · Thomas Schön -
2013 Poster: Bayesian Inference and Learning in Gaussian Process State-Space Models with Particle MCMC »
Roger Frigola · Fredrik Lindsten · Thomas Schön · Carl Edward Rasmussen -
2012 Poster: Ancestor Sampling for Particle Gibbs »
Fredrik Lindsten · Michael Jordan · Thomas Schön