Timezone: »
Matching local visual features is a crucial problem in computer vision and its accuracy greatly depends on the choice of similarity measure. As it is generally very difficult to design by hand a similarity or a kernel perfectly adapted to the data of interest, learning it automatically with as few assumptions as possible is preferable. However, available techniques for kernel learning suffer from several limitations, such as restrictive parametrization or scalability. In this paper, we introduce a simple and flexible family of non-linear kernels which we refer to as Quantized Kernels (QK). QKs are arbitrary kernels in the index space of a data quantizer, i.e., piecewise constant similarities in the original feature space. Quantization allows to compress features and keep the learning tractable. As a result, we obtain state-of-the-art matching performance on a standard benchmark dataset with just a few bits to represent each feature dimension. QKs also have explicit non-linear, low-dimensional feature mappings that grant access to Euclidean geometry for uncompressed features.
Author Information
Danfeng Qin (Computer Vision Lab, ETH Zurich)
Xuanli Chen (TU Munich)
Matthieu Guillaumin (ETH Zurich)
Luc V Gool (Computer Vision Lab, ETH Zurich)
More from the Same Authors
-
2019 Poster: Gated CRF Loss for Weakly Supervised Semantic Image Segmentation »
Anton Obukhov · Stamatios Georgoulis · Dengxin Dai · Luc V Gool -
2021 : Spatial-Temporal Gated Transformersfor Efficient Video Processing »
Yawei Li · Babak Ehteshami Bejnordi · Bert Moons · Tijmen Blankevoort · Amirhossein Habibian · Radu Timofte · Luc V Gool -
2022 Poster: Recurrent Video Restoration Transformer with Guided Deformable Attention »
Jingyun Liang · Yuchen Fan · Xiaoyu Xiang · Rakesh Ranjan · Eddy Ilg · Simon Green · Jiezhang Cao · Kai Zhang · Radu Timofte · Luc V Gool -
2023 Poster: Revisiting Evaluation Metrics for Semantic Segmentation: Optimization and Evaluation of Fine-grained Intersection over Union »
Zifu Wang · Maxim Berman · Amal Rannen-Triki · Philip Torr · Devis Tuia · Tinne Tuytelaars · Luc V Gool · Jiaqian Yu · Matthew Blaschko -
2023 Poster: LART: Neural Correspondence Learning with Latent Regularization Transformer for 3D Motion Transfer »
Haoyu Chen · Hao Tang · Radu Timofte · Luc V Gool · Guoying Zhao -
2023 Poster: Autodecoding Latent 3D Diffusion Models »
Evangelos Ntavelis · Aliaksandr Siarohin · Kyle Olszewski · Chaoyang Wang · Luc V Gool · Sergey Tulyakov -
2023 Poster: Real-Time Motion Prediction via Heterogeneous Polyline Transformer with Relative Pose Encoding »
Zhejun Zhang · Alexander Liniger · Christos Sakaridis · Fisher Yu · Luc V Gool -
2022 Spotlight: Lightning Talks 5A-4 »
Yangrui Chen · Zhiyang Chen · Liang Zhang · Hanqing Wang · Jiaqi Han · Shuchen Wu · shaohui peng · Ganqu Cui · Yoav Kolumbus · Noemi Elteto · Xing Hu · Anwen Hu · Wei Liang · Cong Xie · Lifan Yuan · Noam Nisan · Wenbing Huang · Yousong Zhu · Ishita Dasgupta · Luc V Gool · Tingyang Xu · Rui Zhang · Qin Jin · Zhaowen Li · Meng Ma · Bingxiang He · Yangyi Chen · Juncheng Gu · Wenguan Wang · Ke Tang · Yu Rong · Eric Schulz · Fan Yang · Wei Li · Zhiyuan Liu · Jiaming Guo · Yanghua Peng · Haibin Lin · Haixin Wang · Qi Yi · Maosong Sun · Ruizhi Chen · Chuan Wu · Chaoyang Zhao · Yibo Zhu · Liwei Wu · xishan zhang · Zidong Du · Rui Zhao · Jinqiao Wang · Ling Li · Qi Guo · Ming Tang · Yunji Chen -
2022 Spotlight: Towards Versatile Embodied Navigation »
Hanqing Wang · Wei Liang · Luc V Gool · Wenguan Wang -
2022 Spotlight: Recurrent Video Restoration Transformer with Guided Deformable Attention »
Jingyun Liang · Yuchen Fan · Xiaoyu Xiang · Rakesh Ranjan · Eddy Ilg · Simon Green · Jiezhang Cao · Kai Zhang · Radu Timofte · Luc V Gool -
2022 Poster: I2DFormer: Learning Image to Document Attention for Zero-Shot Image Classification »
Muhammad Ferjad Naeem · Yongqin Xian · Luc V Gool · Federico Tombari -
2022 Poster: Degradation-Aware Unfolding Half-Shuffle Transformer for Spectral Compressive Imaging »
Yuanhao Cai · Jing Lin · Haoqian Wang · Xin Yuan · Henghui Ding · Yulun Zhang · Radu Timofte · Luc V Gool -
2022 Poster: Towards Versatile Embodied Navigation »
Hanqing Wang · Wei Liang · Luc V Gool · Wenguan Wang -
2021 Poster: Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations »
Wouter Van Gansbeke · Simon Vandenhende · Stamatios Georgoulis · Luc V Gool -
2020 Poster: GOCor: Bringing Globally Optimized Correspondence Volumes into Your Neural Network »
Prune Truong · Martin Danelljan · Luc V Gool · Radu Timofte -
2020 Poster: Soft Contrastive Learning for Visual Localization »
Janine Thoma · Danda Pani Paudel · Luc V Gool -
2017 Poster: Soft-to-Hard Vector Quantization for End-to-End Learning Compressible Representations »
Eirikur Agustsson · Fabian Mentzer · Michael Tschannen · Lukas Cavigelli · Radu Timofte · Luca Benini · Luc V Gool -
2016 Poster: Dynamic Filter Networks »
Xu Jia · Bert De Brabandere · Tinne Tuytelaars · Luc V Gool -
2014 Poster: Self-Adaptable Templates for Feature Coding »
Xavier Boix · Gemma Roig · Salomon Diether · Luc V Gool -
2011 Poster: Learning Probabilistic Non-Linear Latent Variable Models for Tracking Complex Activities »
Angela Yao · Juergen Gall · Luc V Gool · Raquel Urtasun