Timezone: »

Online combinatorial optimization with stochastic decision sets and adversarial losses
Gergely Neu · Michal Valko

Tue Dec 09 04:00 PM -- 08:59 PM (PST) @ Level 2, room 210D #None

Most work on sequential learning assumes a fixed set of actions that are available all the time. However, in practice, actions can consist of picking subsets of readings from sensors that may break from time to time, road segments that can be blocked or goods that are out of stock. In this paper we study learning algorithms that are able to deal with stochastic availability of such unreliable composite actions. We propose and analyze algorithms based on the Follow-The-Perturbed-Leader prediction method for several learning settings differing in the feedback provided to the learner. Our algorithms rely on a novel loss estimation technique that we call Counting Asleep Times. We deliver regret bounds for our algorithms for the previously studied full information and (semi-)bandit settings, as well as a natural middle point between the two that we call the restricted information setting. A special consequence of our results is a significant improvement of the best known performance guarantees achieved by an efficient algorithm for the sleeping bandit problem with stochastic availability. Finally, we evaluate our algorithms empirically and show their improvement over the known approaches.

Author Information

Gergely Neu (Universitat Pompeu Fabra)
Michal Valko (DeepMind Paris / Inria / ENS Paris-Saclay)

Michal is a research scientist in DeepMind Paris and SequeL team at Inria Lille - Nord Europe, France, lead by Philippe Preux and Rémi Munos. He also teaches the course Graphs in Machine Learning at l'ENS Cachan. Michal is primarily interested in designing algorithms that would require as little human supervision as possible. This means 1) reducing the “intelligence” that humans need to input into the system and 2) minimising the data that humans need spend inspecting, classifying, or “tuning” the algorithms. Another important feature of machine learning algorithms should be the ability to adapt to changing environments. That is why he is working in domains that are able to deal with minimal feedback, such as semi-supervised learning, bandit algorithms, and anomaly detection. The common thread of Michal's work has been adaptive graph-based learning and its application to the real world applications such as recommender systems, medical error detection, and face recognition. His industrial collaborators include Intel, Technicolor, and Microsoft Research. He received his PhD in 2011 from University of Pittsburgh under the supervision of Miloš Hauskrecht and after was a postdoc of Rémi Munos.

More from the Same Authors