Timezone: »
We develop a model by choosing the maximum entropy distribution from the set of models satisfying certain smoothness and independence criteria; we show that inference on this model generalizes local kernel estimation to the context of Bayesian inference on stochastic processes. Our model enables Bayesian inference in contexts when standard techniques like Gaussian process inference are too expensive to apply. Exact inference on our model is possible for any likelihood function from the exponential family. Inference is then highly efficient, requiring only O(log N) time and O(N) space at run time. We demonstrate our algorithm on several problems and show quantifiable improvement in both speed and performance relative to models based on the Gaussian process.
Author Information
William R Vega-Brown (Massachusetts Institute of Technology)
Marek Doniec (Massachusetts Institute of Technology)
Nicholas Roy (Massachusetts Institute of Technology)
More from the Same Authors
-
2010 Poster: Nonparametric Bayesian Policy Priors for Reinforcement Learning »
Finale P Doshi-Velez · David Wingate · Nicholas Roy · Josh Tenenbaum