Timezone: »

Mondrian Forests: Efficient Online Random Forests
Balaji Lakshminarayanan · Daniel Roy · Yee Whye Teh

Mon Dec 08 04:00 PM -- 08:59 PM (PST) @ Level 2, room 210D #None

Ensembles of randomized decision trees, usually referred to as random forests, are widely used for classification and regression tasks in machine learning and statistics. Random forests achieve competitive predictive performance and are computationally efficient to train and test, making them excellent candidates for real-world prediction tasks. The most popular random forest variants (such as Breiman's random forest and extremely randomized trees) operate on batches of training data. Online methods are now in greater demand. Existing online random forests, however, require more training data than their batch counterpart to achieve comparable predictive performance. In this work, we use Mondrian processes (Roy and Teh, 2009) to construct ensembles of random decision trees we call Mondrian forests. Mondrian forests can be grown in an incremental/online fashion and remarkably, the distribution of online Mondrian forests is the same as that of batch Mondrian forests. Mondrian forests achieve competitive predictive performance comparable with existing online random forests and periodically re-trained batch random forests, while being more than an order of magnitude faster, thus representing a better computation vs accuracy tradeoff.

Author Information

Balaji Lakshminarayanan (Google DeepMind)
Dan Roy (Univ of Toronto & Vector)
Yee Whye Teh (University of Oxford, DeepMind)

I am a Professor of Statistical Machine Learning at the Department of Statistics, University of Oxford and a Research Scientist at DeepMind. I am also an Alan Turing Institute Fellow and a European Research Council Consolidator Fellow. I obtained my Ph.D. at the University of Toronto (working with Geoffrey Hinton), and did postdoctoral work at the University of California at Berkeley (with Michael Jordan) and National University of Singapore (as Lee Kuan Yew Postdoctoral Fellow). I was a Lecturer then a Reader at the Gatsby Computational Neuroscience Unit, UCL, and a tutorial fellow at University College Oxford, prior to my current appointment. I am interested in the statistical and computational foundations of intelligence, and works on scalable machine learning, probabilistic models, Bayesian nonparametrics and deep learning. I was programme co-chair of ICML 2017 and AISTATS 2010.

More from the Same Authors