Timezone: »
To keep up with the Big Data challenge, parallelized algorithms based on dual decomposition have been proposed to perform inference in Markov random fields. Despite this parallelization, current algorithms struggle when the energy has high order terms and the graph is densely connected. In this paper we propose a partitioning strategy followed by a message passing algorithm which is able to exploit pre-computations. It only updates the high-order factors when passing messages across machines. We demonstrate the effectiveness of our approach on the task of joint layout and semantic segmentation estimation from single images, and show that our approach is orders of magnitude faster than current methods.
Author Information
Jian Zhang (ETH Zurich)
Alex Schwing (University of Illinois at Urbana-Champaign)
Raquel Urtasun (University of Toronto)
More from the Same Authors
-
2021 Spotlight: Per-Pixel Classification is Not All You Need for Semantic Segmentation »
Bowen Cheng · Alex Schwing · Alexander Kirillov -
2021 Poster: Bridging the Imitation Gap by Adaptive Insubordination »
Luca Weihs · Unnat Jain · Iou-Jen Liu · Jordi Salvador · Svetlana Lazebnik · Aniruddha Kembhavi · Alex Schwing -
2021 Poster: Per-Pixel Classification is Not All You Need for Semantic Segmentation »
Bowen Cheng · Alex Schwing · Alexander Kirillov -
2021 Poster: A Contrastive Learning Approach for Training Variational Autoencoder Priors »
Jyoti Aneja · Alex Schwing · Jan Kautz · Arash Vahdat -
2021 Poster: Class-agnostic Reconstruction of Dynamic Objects from Videos »
Zhongzheng Ren · Xiaoming Zhao · Alex Schwing -
2021 Poster: Perceptual Score: What Data Modalities Does Your Model Perceive? »
Itai Gat · Idan Schwartz · Alex Schwing -
2019 : Carl Doersch, Raquel Urtasun, Sanja Fidler moderated by Natalia Neverova »
Raquel Urtasun · Sanja Fidler · Natalia Neverova · Ilija Radosavovic · Carl Doersch -
2019 : Raquel Urtasun - Science and Engineering for Self-driving »
Raquel Urtasun -
2018 Poster: Neural Guided Constraint Logic Programming for Program Synthesis »
Lisa Zhang · Gregory Rosenblatt · Ethan Fetaya · Renjie Liao · William Byrd · Matthew Might · Raquel Urtasun · Richard Zemel -
2017 : Machine Learning for Self-Driving Cars, Raquel Urtasun, Uber ATG and University of Toronto »
Raquel Urtasun -
2017 : Raquel Urtasun: Deep Learning for Self-Driving Cars »
Raquel Urtasun -
2017 Poster: The Reversible Residual Network: Backpropagation Without Storing Activations »
Aidan Gomez · Mengye Ren · Raquel Urtasun · Roger Grosse -
2017 Poster: Few-Shot Learning Through an Information Retrieval Lens »
Eleni Triantafillou · Richard Zemel · Raquel Urtasun -
2016 : Raquel Urtasun »
Raquel Urtasun -
2016 : Invited Talk - TorontoCity Benchmark: Towards Building Large Scale 3D Models of the World »
Raquel Urtasun -
2016 : Invited Talk: Towards Affordable Self-driving Cars (Raquel Urtasun, University of Toronto) »
Raquel Urtasun -
2016 Poster: Proximal Deep Structured Models »
Shenlong Wang · Sanja Fidler · Raquel Urtasun -
2016 Poster: Understanding the Effective Receptive Field in Deep Convolutional Neural Networks »
Wenjie Luo · Yujia Li · Raquel Urtasun · Richard Zemel -
2016 Poster: Constraints Based Convex Belief Propagation »
Yaniv Tenzer · Alex Schwing · Kevin Gimpel · Tamir Hazan -
2016 Poster: Learning Deep Parsimonious Representations »
Renjie Liao · Alex Schwing · Richard Zemel · Raquel Urtasun -
2015 Poster: Skip-Thought Vectors »
Jamie Kiros · Yukun Zhu · Russ Salakhutdinov · Richard Zemel · Raquel Urtasun · Antonio Torralba · Sanja Fidler -
2015 Poster: Smooth and Strong: MAP Inference with Linear Convergence »
Ofer Meshi · Mehrdad Mahdavi · Alex Schwing -
2015 Poster: 3D Object Proposals for Accurate Object Class Detection »
Xiaozhi Chen · Kaustav Kundu · Yukun Zhu · Andrew G Berneshawi · Huimin Ma · Sanja Fidler · Raquel Urtasun -
2014 Poster: Efficient Inference of Continuous Markov Random Fields with Polynomial Potentials »
Shenlong Wang · Alex Schwing · Raquel Urtasun -
2013 Poster: Latent Structured Active Learning »
Wenjie Luo · Alex Schwing · Raquel Urtasun -
2012 Poster: 3D Object Detection and Viewpoint Estimation with a Deformable 3D Cuboid Model »
Sanja Fidler · Sven Dickinson · Raquel Urtasun -
2012 Poster: Globally Convergent Dual MAP LP Relaxation Solvers using Fenchel-Young Margins »
Alex Schwing · Tamir Hazan · Marc Pollefeys · Raquel Urtasun -
2012 Spotlight: 3D Object Detection and Viewpoint Estimation with a Deformable 3D Cuboid Model »
Sanja Fidler · Sven Dickinson · Raquel Urtasun -
2012 Session: Oral Session 1 »
Raquel Urtasun -
2011 Session: Spotlight Session 5 »
Raquel Urtasun -
2011 Session: Oral Session 6 »
Raquel Urtasun -
2011 Poster: Learning Probabilistic Non-Linear Latent Variable Models for Tracking Complex Activities »
Angela Yao · Juergen Gall · Luc V Gool · Raquel Urtasun -
2011 Poster: Joint 3D Estimation of Objects and Scene Layout »
Andreas Geiger · Christian Wojek · Raquel Urtasun -
2010 Poster: Sparse Coding for Learning Interpretable Spatio-Temporal Primitives »
Taehwan Kim · Greg Shakhnarovich · Raquel Urtasun -
2010 Session: Spotlights Session 6 »
Raquel Urtasun -
2010 Session: Oral Session 7 »
Raquel Urtasun -
2010 Poster: Implicitly Constrained Gaussian Process Regression for Monocular Non-Rigid Pose Estimation »
Mathieu Salzmann · Raquel Urtasun -
2010 Poster: A Primal-Dual Message-Passing Algorithm for Approximated Large Scale Structured Prediction »
Tamir Hazan · Raquel Urtasun