Timezone: »
Poster
Local Linear Convergence of Forward--Backward under Partial Smoothness
Jingwei Liang · Jalal Fadili · Gabriel Peyré
In this paper, we consider the Forward--Backward proximal splitting algorithm to minimize the sum of two proper closed convex functions, one of which having a Lipschitz continuous gradient and the other being partly smooth relatively to an active manifold $\mathcal{M}$. We propose a generic framework in which we show that the Forward--Backward (i) correctly identifies the active manifold $\mathcal{M}$ in a finite number of iterations, and then (ii) enters a local linear convergence regime that we characterize precisely. This gives a grounded and unified explanation to the typical behaviour that has been observed numerically for many problems encompassed in our framework, including the Lasso, the group Lasso, the fused Lasso and the nuclear norm regularization to name a few. These results may have numerous applications including in signal/image processing processing, sparse recovery and machine learning.
Author Information
Jingwei Liang (Normandie University, ENSICAEN, CNRS)
Jalal Fadili (CNRS-ENSICAEN-Univ. Caen)
Gabriel Peyré (Université Paris Dauphine)
More from the Same Authors
-
2021 : Faster Unbalanced Optimal Transport: Translation invariant Sinkhorn and 1-D Frank-Wolfe »
Thibault Sejourne · Francois-Xavier Vialard · Gabriel Peyré -
2021 : Faster Unbalanced Optimal Transport: Translation invariant Sinkhorn and 1-D Frank-Wolfe »
Thibault Sejourne · Francois-Xavier Vialard · Gabriel Peyré -
2021 : Linear-Time Gromov Wasserstein Distances using Low Rank Couplings and Costs »
Meyer Scetbon · Gabriel Peyré · Marco Cuturi -
2021 : Linear-Time Gromov Wasserstein Distances using Low Rank Couplings and Costs »
Meyer Scetbon · Gabriel Peyré · Marco Cuturi -
2021 Poster: Smooth Bilevel Programming for Sparse Regularization »
Clarice Poon · Gabriel Peyré -
2021 Poster: The Unbalanced Gromov Wasserstein Distance: Conic Formulation and Relaxation »
Thibault Sejourne · Francois-Xavier Vialard · Gabriel Peyré -
2017 Workshop: Optimal Transport and Machine Learning »
Olivier Bousquet · Marco Cuturi · Gabriel Peyré · Fei Sha · Justin Solomon -
2016 Poster: A Multi-step Inertial Forward-Backward Splitting Method for Non-convex Optimization »
Jingwei Liang · Jalal Fadili · Gabriel Peyré -
2016 Poster: Sparse Support Recovery with Non-smooth Loss Functions »
Kévin Degraux · Gabriel Peyré · Jalal Fadili · Laurent Jacques -
2016 Poster: Stochastic Optimization for Large-scale Optimal Transport »
Aude Genevay · Marco Cuturi · Gabriel Peyré · Francis Bach -
2015 Poster: Biologically Inspired Dynamic Textures for Probing Motion Perception »
Jonathan Vacher · Andrew Isaac Meso · Laurent U Perrinet · Gabriel Peyré -
2015 Spotlight: Biologically Inspired Dynamic Textures for Probing Motion Perception »
Jonathan Vacher · Andrew Isaac Meso · Laurent U Perrinet · Gabriel Peyré -
2014 Workshop: Optimal Transport and Machine Learning »
Marco Cuturi · Gabriel Peyré · Justin Solomon · Alexander Barvinok · Piotr Indyk · Robert McCann · Adam Oberman -
2012 Poster: A quasi-Newton proximal splitting method »
Stephen Becker · Jalal Fadili -
2012 Spotlight: A quasi-Newton proximal splitting method »
Stephen Becker · Jalal Fadili