Timezone: »
Poster
Learning with Fredholm Kernels
Qichao Que · Mikhail Belkin · Yusu Wang
In this paper we propose a framework for supervised and semi-supervised learning based on reformulating the learning problem as a regularized Fredholm integral equation. Our approach fits naturally into the kernel framework and can be interpreted as constructing new data-dependent kernels, which we call Fredholm kernels. We proceed to discuss the "noise assumption" for semi-supervised learning and provide evidence evidence both theoretical and experimental that Fredholm kernels can effectively utilize unlabeled data under the noise assumption. We demonstrate that methods based on Fredholm learning show very competitive performance in the standard semi-supervised learning setting.
Author Information
Qichao Que (The Ohio State University)
Mikhail Belkin (Ohio State University)
Yusu Wang (Ohio State University)
More from the Same Authors
-
2021 Poster: Risk Bounds for Over-parameterized Maximum Margin Classification on Sub-Gaussian Mixtures »
Yuan Cao · Quanquan Gu · Mikhail Belkin -
2021 Poster: Multiple Descent: Design Your Own Generalization Curve »
Lin Chen · Yifei Min · Mikhail Belkin · Amin Karbasi -
2021 Poster: NN-Baker: A Neural-network Infused Algorithmic Framework for Optimization Problems on Geometric Intersection Graphs »
Evan McCarty · Qi Zhao · Anastasios Sidiropoulos · Yusu Wang -
2020 : Invited Talk: Yusu Wang: Discrete Morse-based Graph Reconstruction and Data Analysis »
Yusu Wang -
2019 Poster: Learning metrics for persistence-based summaries and applications for graph classification »
Qi Zhao · Yusu Wang -
2018 Poster: Overfitting or perfect fitting? Risk bounds for classification and regression rules that interpolate »
Mikhail Belkin · Daniel Hsu · Partha P Mitra -
2017 Poster: Diving into the shallows: a computational perspective on large-scale shallow learning »
SIYUAN MA · Mikhail Belkin -
2017 Spotlight: Diving into the shallows: a computational perspective on large-scale shallow learning »
SIYUAN MA · Mikhail Belkin -
2016 Poster: Graphons, mergeons, and so on! »
Justin Eldridge · Mikhail Belkin · Yusu Wang -
2016 Oral: Graphons, mergeons, and so on! »
Justin Eldridge · Mikhail Belkin · Yusu Wang -
2016 Poster: Clustering with Bregman Divergences: an Asymptotic Analysis »
Chaoyue Liu · Mikhail Belkin -
2015 Poster: A Pseudo-Euclidean Iteration for Optimal Recovery in Noisy ICA »
James R Voss · Mikhail Belkin · Luis Rademacher -
2013 Workshop: Modern Nonparametric Methods in Machine Learning »
Arthur Gretton · Mladen Kolar · Samory Kpotufe · John Lafferty · Han Liu · Bernhard Schölkopf · Alexander Smola · Rob Nowak · Mikhail Belkin · Lorenzo Rosasco · peter bickel · Yue Zhao -
2013 Poster: Inverse Density as an Inverse Problem: the Fredholm Equation Approach »
Qichao Que · Mikhail Belkin -
2013 Poster: Fast Algorithms for Gaussian Noise Invariant Independent Component Analysis »
James R Voss · Luis Rademacher · Mikhail Belkin -
2013 Spotlight: Inverse Density as an Inverse Problem: the Fredholm Equation Approach »
Qichao Que · Mikhail Belkin -
2011 Poster: Data Skeletonization via Reeb Graphs »
Xiaoyin Ge · Issam I Safa · Mikhail Belkin · Yusu Wang -
2009 Poster: Semi-supervised Learning using Sparse Eigenfunction Bases »
Kaushik Sinha · Mikhail Belkin -
2007 Spotlight: The Value of Labeled and Unlabeled Examples when the Model is Imperfect »
Kaushik Sinha · Mikhail Belkin -
2007 Poster: The Value of Labeled and Unlabeled Examples when the Model is Imperfect »
Kaushik Sinha · Mikhail Belkin -
2006 Poster: On the Relation Between Low Density Separation, Spectral Clustering and Graph Cuts »
Hariharan Narayanan · Mikhail Belkin · Partha Niyogi -
2006 Poster: Convergence of Laplacian Eigenmaps »
Mikhail Belkin · Partha Niyogi