Timezone: »
Most standard algorithms for prediction with expert advice depend on a parameter called the learning rate. This learning rate needs to be large enough to fit the data well, but small enough to prevent overfitting. For the exponential weights algorithm, a sequence of prior work has established theoretical guarantees for higher and higher data-dependent tunings of the learning rate, which allow for increasingly aggressive learning. But in practice such theoretical tunings often still perform worse (as measured by their regret) than ad hoc tuning with an even higher learning rate. To close the gap between theory and practice we introduce an approach to learn the learning rate. Up to a factor that is at most (poly)logarithmic in the number of experts and the inverse of the learning rate, our method performs as well as if we would know the empirically best learning rate from a large range that includes both conservative small values and values that are much higher than those for which formal guarantees were previously available. Our method employs a grid of learning rates, yet runs in linear time regardless of the size of the grid.
Author Information
Wouter M Koolen (Centrum Wiskunde & Informatica, Amsterdam)
Tim van Erven (University of Amsterdam)
Peter Grünwald (CWI and Leiden University)
More from the Same Authors
-
2022 Poster: Between Stochastic and Adversarial Online Convex Optimization: Improved Regret Bounds via Smoothness »
Sarah Sachs · Hedi Hadiji · Tim van Erven · Cristóbal Guzmán -
2019 Poster: PAC-Bayes Un-Expected Bernstein Inequality »
Zakaria Mhammedi · Peter Grünwald · Benjamin Guedj -
2017 : Peter Grünwald - A Tight Excess Risk Bound via a Unified PAC-Bayesian-Rademacher-Shtarkov-MDL Complexity »
Peter Grünwald -
2016 : Safe Probability »
Peter Grünwald -
2016 : (Ir-)rationality of human decision making »
Peter Grünwald -
2016 Poster: Combining Adversarial Guarantees and Stochastic Fast Rates in Online Learning »
Wouter Koolen · Peter Grünwald · Tim van Erven -
2016 Poster: MetaGrad: Multiple Learning Rates in Online Learning »
Tim van Erven · Wouter Koolen -
2016 Oral: MetaGrad: Multiple Learning Rates in Online Learning »
Tim van Erven · Wouter Koolen -
2015 : Discussion Panel »
Tim van Erven · Wouter Koolen · Peter Grünwald · Shai Ben-David · Dylan Foster · Satyen Kale · Gergely Neu -
2015 : Easy Data »
Peter Grünwald -
2015 : Learning Faster from Easy Data II: Introduction »
Tim van Erven -
2015 Workshop: Learning Faster from Easy Data II »
Tim van Erven · Wouter Koolen -
2014 Workshop: From Bad Models to Good Policies (Sequential Decision Making under Uncertainty) »
Odalric-Ambrym Maillard · Timothy A Mann · Shie Mannor · Jeremie Mary · Laurent Orseau · Thomas Dietterich · Ronald Ortner · Peter Grünwald · Joelle Pineau · Raphael Fonteneau · Georgios Theocharous · Esteban D Arcaute · Christos Dimitrakakis · Nan Jiang · Doina Precup · Pierre-Luc Bacon · Marek Petrik · Aviv Tamar -
2014 Poster: Efficient Minimax Strategies for Square Loss Games »
Wouter M Koolen · Alan Malek · Peter Bartlett -
2013 Workshop: Learning Faster From Easy Data »
Peter Grünwald · Wouter M Koolen · Sasha Rakhlin · Nati Srebro · Alekh Agarwal · Karthik Sridharan · Tim van Erven · Sebastien Bubeck -
2013 Workshop: Large Scale Matrix Analysis and Inference »
Reza Zadeh · Gunnar Carlsson · Michael Mahoney · Manfred K. Warmuth · Wouter M Koolen · Nati Srebro · Satyen Kale · Malik Magdon-Ismail · Ashish Goel · Matei A Zaharia · David Woodruff · Ioannis Koutis · Benjamin Recht -
2013 Poster: The Pareto Regret Frontier »
Wouter M Koolen -
2012 Poster: Mixability in Statistical Learning »
Tim van Erven · Peter Grünwald · Mark Reid · Robert Williamson -
2012 Poster: Putting Bayes to sleep »
Wouter M Koolen · Dmitri Adamskiy · Manfred K. Warmuth -
2012 Spotlight: Putting Bayes to sleep »
Wouter M Koolen · Dmitri Adamskiy · Manfred K. Warmuth -
2011 Poster: Adaptive Hedge »
Tim van Erven · Peter Grünwald · Wouter M Koolen · Steven D Rooij -
2011 Poster: Learning Eigenvectors for Free »
Wouter M Koolen · Wojciech Kotlowski · Manfred K. Warmuth -
2007 Spotlight: Catching Up Faster in Bayesian Model Selection and Model Averaging »
Tim van Erven · Peter Grünwald · Steven de Rooij -
2007 Poster: Catching Up Faster in Bayesian Model Selection and Model Averaging »
Tim van Erven · Peter Grünwald · Steven de Rooij