Timezone: »

Inferring synaptic conductances from spike trains with a biophysically inspired point process model
Kenneth W Latimer · E.J. Chichilnisky · Fred Rieke · Jonathan W Pillow

Mon Dec 08 04:00 PM -- 08:59 PM (PST) @ Level 2, room 210D #None

A popular approach to neural characterization describes neural responses in terms of a cascade of linear and nonlinear stages: a linear filter to describe stimulus integration, followed by a nonlinear function to convert the filter output to spike rate. However, real neurons respond to stimuli in a manner that depends on the nonlinear integration of excitatory and inhibitory synaptic inputs. Here we introduce a biophysically inspired point process model that explicitly incorporates stimulus-induced changes in synaptic conductance in a dynamical model of neuronal membrane potential. Our work makes two important contributions. First, on a theoretical level, it offers a novel interpretation of the popular generalized linear model (GLM) for neural spike trains. We show that the classic GLM is a special case of our conductance-based model in which the stimulus linearly modulates excitatory and inhibitory conductances in an equal and opposite “push-pull” fashion. Our model can therefore be viewed as a direct extension of the GLM in which we relax these constraints; the resulting model can exhibit shunting as well as hyperpolarizing inhibition, and time-varying changes in both gain and membrane time constant. Second, on a practical level, we show that our model provides a tractable model of spike responses in early sensory neurons that is both more accurate and more interpretable than the GLM. Most importantly, we show that we can accurately infer intracellular synaptic conductances from extracellularly recorded spike trains. We validate these estimates using direct intracellular measurements of excitatory and inhibitory conductances in parasol retinal ganglion cells. We show that the model fit to extracellular spike trains can predict excitatory and inhibitory conductances elicited by novel stimuli with nearly the same accuracy as a model trained directly with intracellular conductances.

Author Information

Kenneth W Latimer (UT Austin)
chichilnisky Chichilnisky (Stanford University)
Fred Rieke (University of Washington, Seattle)
Jonathan W Pillow (UT Austin)

Jonathan Pillow is an assistant professor in Psychology and Neurobiology at the University of Texas at Austin. He graduated from the University of Arizona in 1997 with a degree in mathematics and philosophy, and was a U.S. Fulbright fellow in Morocco in 1998. He received his Ph.D. in neuroscience from NYU in 2005, and was a Royal Society postdoctoral reserach fellow at the Gatsby Computational Neuroscience Unit, UCL from 2005 to 2008. His recent work involves statistical methods for understanding the neural code in single neurons and neural populations, and his lab conducts psychophysical experiments designed to test Bayesian models of human sensory perception.

More from the Same Authors