Timezone: »

 
Poster
Inferring sparse representations of continuous signals with continuous orthogonal matching pursuit
Karin C Knudson · Jacob Yates · Alexander Huk · Jonathan W Pillow

Mon Dec 08 04:00 PM -- 08:59 PM (PST) @ Level 2, room 210D #None

Many signals, such as spike trains recorded in multi-channel electrophysiological recordings, may be represented as the sparse sum of translated and scaled copies of waveforms whose timing and amplitudes are of interest. From the aggregate signal, one may seek to estimate the identities, amplitudes, and translations of the waveforms that compose the signal. Here we present a fast method for recovering these identities, amplitudes, and translations. The method involves greedily selecting component waveforms and then refining estimates of their amplitudes and translations, moving iteratively between these steps in a process analogous to the well-known Orthogonal Matching Pursuit (OMP) algorithm. Our approach for modeling translations borrows from Continuous Basis Pursuit (CBP), which we extend in several ways: by selecting a subspace that optimally captures translated copies of the waveforms, replacing the convex optimization problem with a greedy approach, and moving to the Fourier domain to more precisely estimate time shifts. We test the resulting method, which we call Continuous Orthogonal Matching Pursuit (COMP), on simulated and neural data, where it shows gains over CBP in both speed and accuracy.

Author Information

Karin C Knudson (UT Austin)
Jacob Yates (University of Texas at Austin)
Alexander Huk (University of Texas at Austin)
Jonathan W Pillow (UT Austin)

Jonathan Pillow is an assistant professor in Psychology and Neurobiology at the University of Texas at Austin. He graduated from the University of Arizona in 1997 with a degree in mathematics and philosophy, and was a U.S. Fulbright fellow in Morocco in 1998. He received his Ph.D. in neuroscience from NYU in 2005, and was a Royal Society postdoctoral reserach fellow at the Gatsby Computational Neuroscience Unit, UCL from 2005 to 2008. His recent work involves statistical methods for understanding the neural code in single neurons and neural populations, and his lab conducts psychophysical experiments designed to test Bayesian models of human sensory perception.

More from the Same Authors