Timezone: »
We consider the problem of subspace clustering: given points that lie on or near the union of many low-dimensional linear subspaces, recover the subspaces. To this end, one first identifies sets of points close to the same subspace and uses the sets to estimate the subspaces. As the geometric structure of the clusters (linear subspaces) forbids proper performance of general distance based approaches such as K-means, many model-specific methods have been proposed. In this paper, we provide new simple and efficient algorithms for this problem. Our statistical analysis shows that the algorithms are guaranteed exact (perfect) clustering performance under certain conditions on the number of points and the affinity be- tween subspaces. These conditions are weaker than those considered in the standard statistical literature. Experimental results on synthetic data generated from the standard unions of subspaces model demonstrate our theory. We also show that our algorithm performs competitively against state-of-the-art algorithms on real-world applications such as motion segmentation and face clustering, with much simpler implementation and lower computational cost.
Author Information
Dohyung Park (UT Austin)
Constantine Caramanis (UT Austin)
Sujay Sanghavi (UT-Austin)
More from the Same Authors
-
2021 Spotlight: RL for Latent MDPs: Regret Guarantees and a Lower Bound »
Jeongyeol Kwon · Yonathan Efroni · Constantine Caramanis · Shie Mannor -
2021 : Reinforcement Learning in Reward-Mixing MDPs »
Jeongyeol Kwon · Yonathan Efroni · Constantine Caramanis · Shie Mannor -
2022 : Differentially Private Federated Learning with Normalized Updates »
Rudrajit Das · Abolfazl Hashemi · Sujay Sanghavi · Inderjit Dhillon -
2022 Poster: Tractable Optimality in Episodic Latent MABs »
Jeongyeol Kwon · Yonathan Efroni · Constantine Caramanis · Shie Mannor -
2022 Poster: Non-Stationary Bandits under Recharging Payoffs: Improved Planning with Sublinear Regret »
Orestis Papadigenopoulos · Constantine Caramanis · Sanjay Shakkottai -
2022 Poster: Minimax Regret for Cascading Bandits »
Daniel Vial · Sujay Sanghavi · Sanjay Shakkottai · R. Srikant -
2022 Poster: Toward Understanding Privileged Features Distillation in Learning-to-Rank »
Shuo Yang · Sujay Sanghavi · Holakou Rahmanian · Jan Bakus · Vishwanathan S. V. N. -
2021 Poster: RL for Latent MDPs: Regret Guarantees and a Lower Bound »
Jeongyeol Kwon · Yonathan Efroni · Constantine Caramanis · Shie Mannor -
2021 Poster: Nearly Horizon-Free Offline Reinforcement Learning »
Tongzheng Ren · Jialian Li · Bo Dai · Simon Du · Sujay Sanghavi -
2021 Poster: Recurrent Submodular Welfare and Matroid Blocking Semi-Bandits »
Orestis Papadigenopoulos · Constantine Caramanis -
2021 Poster: Reinforcement Learning in Reward-Mixing MDPs »
Jeongyeol Kwon · Yonathan Efroni · Constantine Caramanis · Shie Mannor -
2020 Poster: Second Order Optimality in Decentralized Non-Convex Optimization via Perturbed Gradient Tracking »
Isidoros Tziotis · Constantine Caramanis · Aryan Mokhtari -
2020 Poster: Mix and Match: An Optimistic Tree-Search Approach for Learning Models from Mixture Distributions »
Matthew Faw · Rajat Sen · Karthikeyan Shanmugam · Constantine Caramanis · Sanjay Shakkottai -
2020 Poster: Applications of Common Entropy for Causal Inference »
Murat Kocaoglu · Sanjay Shakkottai · Alex Dimakis · Constantine Caramanis · Sriram Vishwanath -
2020 Poster: Robust compressed sensing using generative models »
Ajil Jalal · Liu Liu · Alex Dimakis · Constantine Caramanis -
2019 Poster: Interaction Hard Thresholding: Consistent Sparse Quadratic Regression in Sub-quadratic Time and Space »
Shuo Yang · Yanyao Shen · Sujay Sanghavi -
2019 Poster: Primal-Dual Block Generalized Frank-Wolfe »
Qi Lei · JIACHENG ZHUO · Constantine Caramanis · Inderjit Dhillon · Alex Dimakis -
2019 Poster: Sparse Logistic Regression Learns All Discrete Pairwise Graphical Models »
Shanshan Wu · Sujay Sanghavi · Alex Dimakis -
2019 Spotlight: Sparse Logistic Regression Learns All Discrete Pairwise Graphical Models »
Shanshan Wu · Sujay Sanghavi · Alex Dimakis -
2019 Poster: Iterative Least Trimmed Squares for Mixed Linear Regression »
Yanyao Shen · Sujay Sanghavi -
2019 Poster: Blocking Bandits »
Soumya Basu · Rajat Sen · Sujay Sanghavi · Sanjay Shakkottai -
2019 Poster: Learning Distributions Generated by One-Layer ReLU Networks »
Shanshan Wu · Alex Dimakis · Sujay Sanghavi -
2018 : Poster Session »
Sujay Sanghavi · Vatsal Shah · Yanyao Shen · Tianchen Zhao · Yuandong Tian · Tomer Galanti · Mufan Li · Gilad Cohen · Daniel Rothchild · Aristide Baratin · Devansh Arpit · Vagelis Papalexakis · Michael Perlmutter · Ashok Vardhan Makkuva · Pim de Haan · Yingyan Lin · Wanmo Kang · Cheolhyoung Lee · Hao Shen · Sho Yaida · Dan Roberts · Nadav Cohen · Philippe Casgrain · Dejiao Zhang · Tengyu Ma · Avinash Ravichandran · Julian Emilio Salazar · Bo Li · Davis Liang · Christopher Wong · Glen Bigan Mbeng · Animesh Garg -
2016 Poster: Single Pass PCA of Matrix Products »
Shanshan Wu · Srinadh Bhojanapalli · Sujay Sanghavi · Alex Dimakis -
2016 Poster: Fast Algorithms for Robust PCA via Gradient Descent »
Xinyang Yi · Dohyung Park · Yudong Chen · Constantine Caramanis -
2016 Poster: More Supervision, Less Computation: Statistical-Computational Tradeoffs in Weakly Supervised Learning »
Xinyang Yi · Zhaoran Wang · Zhuoran Yang · Constantine Caramanis · Han Liu -
2016 Poster: Normalized Spectral Map Synchronization »
Yanyao Shen · Qixing Huang · Nati Srebro · Sujay Sanghavi -
2015 Poster: Optimal Linear Estimation under Unknown Nonlinear Transform »
Xinyang Yi · Zhaoran Wang · Constantine Caramanis · Han Liu -
2015 Poster: Convergence Rates of Active Learning for Maximum Likelihood Estimation »
Kamalika Chaudhuri · Sham Kakade · Praneeth Netrapalli · Sujay Sanghavi -
2015 Poster: Regularized EM Algorithms: A Unified Framework and Statistical Guarantees »
Xinyang Yi · Constantine Caramanis -
2014 Poster: Non-convex Robust PCA »
Praneeth Netrapalli · Niranjan Uma Naresh · Sujay Sanghavi · Animashree Anandkumar · Prateek Jain -
2014 Spotlight: Non-convex Robust PCA »
Praneeth Netrapalli · Niranjan Uma Naresh · Sujay Sanghavi · Animashree Anandkumar · Prateek Jain -
2013 Poster: Phase Retrieval using Alternating Minimization »
Praneeth Netrapalli · Prateek Jain · Sujay Sanghavi -
2013 Poster: Memory Limited, Streaming PCA »
Ioannis Mitliagkas · Constantine Caramanis · Prateek Jain -
2012 Poster: Clustering Sparse Graphs »
Yudong Chen · Sujay Sanghavi · Huan Xu -
2010 Workshop: Robust Statistical Learning »
Pradeep Ravikumar · Constantine Caramanis · Sujay Sanghavi -
2010 Oral: A Dirty Model for Multi-task Learning »
Ali Jalali · Pradeep Ravikumar · Sujay Sanghavi · Chao Ruan -
2010 Poster: Robust PCA via Outlier Pursuit »
Huan Xu · Constantine Caramanis · Sujay Sanghavi -
2010 Poster: A Dirty Model for Multi-task Learning »
Ali Jalali · Pradeep Ravikumar · Sujay Sanghavi · Chao Ruan -
2007 Spotlight: Message Passing for Max-weight Independent Set »
Sujay Sanghavi · Devavrat Shah · Alan S Willsky -
2007 Poster: Message Passing for Max-weight Independent Set »
Sujay Sanghavi · Devavrat Shah · Alan S Willsky -
2007 Poster: Linear programming analysis of loopy belief propagation for weighted matching »
Sujay Sanghavi · Dmitry Malioutov · Alan S Willsky