Timezone: »
We define a fairness solution criterion for multi-agent decision-making problems, where agents have local interests. This new criterion aims to maximize the worst performance of agents with consideration on the overall performance. We develop a simple linear programming approach and a more scalable game-theoretic approach for computing an optimal fairness policy. This game-theoretic approach formulates this fairness optimization as a two-player, zero-sum game and employs an iterative algorithm for finding a Nash equilibrium, corresponding to an optimal fairness policy. We scale up this approach by exploiting problem structure and value function approximation. Our experiments on resource allocation problems show that this fairness criterion provides a more favorable solution than the utilitarian criterion, and that our game-theoretic approach is significantly faster than linear programming.
Author Information
Chongjie Zhang (Massachusetts Institute of Technology)
Julie A Shah (MIT)
More from the Same Authors
-
2022 : Trading off Utility, Informativeness, and Complexity in Emergent Communication »
Mycal Tucker · Julie A Shah · Roger Levy · Noga Zaslavsky -
2022 : Fast Adaptation via Human Diagnosis of Task Distribution Shift »
Andi Peng · Mark Ho · Aviv Netanyahu · Julie A Shah · Pulkit Agrawal -
2022 : Temporal Logic Imitation: Learning Plan-Satisficing Motion Policies from Demonstrations »
Felix Yanwei Wang · Nadia Figueroa · Shen Li · Ankit Shah · Julie A Shah -
2022 : Aligning Robot Representations with Humans »
Andreea Bobu · Andi Peng · Pulkit Agrawal · Julie A Shah · Anca Dragan -
2022 : Generalization and Translatability in Emergent Communication via Informational Constraints »
Mycal Tucker · Roger Levy · Julie A Shah · Noga Zaslavsky -
2022 : Generalization and Translatability in Emergent Communication via Informational Constraints »
Mycal Tucker · Roger Levy · Julie A Shah · Noga Zaslavsky -
2021 : [O5] Do Feature Attribution Methods Correctly Attribute Features? »
Yilun Zhou · Serena Booth · Marco Tulio Ribeiro · Julie A Shah -
2021 Poster: Emergent Discrete Communication in Semantic Spaces »
Mycal Tucker · Huao Li · Siddharth Agrawal · Dana Hughes · Katia Sycara · Michael Lewis · Julie A Shah -
2018 Poster: Bayesian Inference of Temporal Task Specifications from Demonstrations »
Ankit Shah · Pritish Kamath · Julie A Shah · Shen Li -
2016 Workshop: The Future of Interactive Machine Learning »
Kory Mathewson @korymath · Kaushik Subramanian · Mark Ho · Robert Loftin · Joseph L Austerweil · Anna Harutyunyan · Doina Precup · Layla El Asri · Matthew Gombolay · Jerry Zhu · Sonia Chernova · Charles Isbell · Patrick M Pilarski · Weng-Keen Wong · Manuela Veloso · Julie A Shah · Matthew Taylor · Brenna Argall · Michael Littman -
2015 Poster: Mind the Gap: A Generative Approach to Interpretable Feature Selection and Extraction »
Been Kim · Julie A Shah · Finale Doshi-Velez -
2014 Poster: The Bayesian Case Model: A Generative Approach for Case-Based Reasoning and Prototype Classification »
Been Kim · Cynthia Rudin · Julie A Shah