Timezone: »
In many areas of medicine, security, and life sciences, we want to allocate limited resources to different sources in order to detect extreme values. In this paper, we study an efficient way to allocate these resources sequentially under limited feedback. While sequential design of experiments is well studied in bandit theory, the most commonly optimized property is the regret with respect to the maximum mean reward. However, in other problems such as network intrusion detection, we are interested in detecting the most extreme value output by the sources. Therefore, in our work we study extreme regret which measures the efficiency of an algorithm compared to the oracle policy selecting the source with the heaviest tail. We propose the ExtremeHunter algorithm, provide its analysis, and evaluate it empirically on synthetic and real-world experiments.
Author Information
Alexandra Carpentier (StatsLab Cambridge)
Michal Valko (DeepMind)
Michal is a machine learning scientist in DeepMind Paris, tenured researcher at Inria, and the lecturer of the master course Graphs in Machine Learning at l'ENS Paris-Saclay. Michal is primarily interested in designing algorithms that would require as little human supervision as possible. This means 1) reducing the “intelligence” that humans need to input into the system and 2) minimizing the data that humans need to spend inspecting, classifying, or “tuning” the algorithms. That is why he is working on methods and settings that are able to deal with minimal feedback, such as deep reinforcement learning, bandit algorithms, or self-supervised learning. Michal is actively working on represenation learning and building worlds models. He is also working on deep (reinforcement) learning algorithm that have some theoretical underpinning. He has also worked on sequential algorithms with structured decisions where exploiting the structure leads to provably faster learning. He received his Ph.D. in 2011 from the University of Pittsburgh under the supervision of Miloš Hauskrecht and after was a postdoc of Rémi Munos before taking a permanent position at Inria in 2012.
More from the Same Authors
-
2021 Spotlight: Stochastic Shortest Path: Minimax, Parameter-Free and Towards Horizon-Free Regret »
Jean Tarbouriech · Runlong Zhou · Simon Du · Matteo Pirotta · Michal Valko · Alessandro Lazaric -
2021 Spotlight: A Provably Efficient Sample Collection Strategy for Reinforcement Learning »
Jean Tarbouriech · Matteo Pirotta · Michal Valko · Alessandro Lazaric -
2021 Oral: Drop, Swap, and Generate: A Self-Supervised Approach for Generating Neural Activity »
Ran Liu · Mehdi Azabou · Max Dabagia · Chi-Heng Lin · Mohammad Gheshlaghi Azar · Keith Hengen · Michal Valko · Eva Dyer -
2021 Poster: Drop, Swap, and Generate: A Self-Supervised Approach for Generating Neural Activity »
Ran Liu · Mehdi Azabou · Max Dabagia · Chi-Heng Lin · Mohammad Gheshlaghi Azar · Keith Hengen · Michal Valko · Eva Dyer -
2021 Poster: Learning in two-player zero-sum partially observable Markov games with perfect recall »
Tadashi Kozuno · Pierre Ménard · Remi Munos · Michal Valko -
2021 Poster: Stochastic Shortest Path: Minimax, Parameter-Free and Towards Horizon-Free Regret »
Jean Tarbouriech · Runlong Zhou · Simon Du · Matteo Pirotta · Michal Valko · Alessandro Lazaric -
2021 Poster: A Provably Efficient Sample Collection Strategy for Reinforcement Learning »
Jean Tarbouriech · Matteo Pirotta · Michal Valko · Alessandro Lazaric -
2021 Poster: Unifying Gradient Estimators for Meta-Reinforcement Learning via Off-Policy Evaluation »
Yunhao Tang · Tadashi Kozuno · Mark Rowland · Remi Munos · Michal Valko -
2020 Poster: Improved Sample Complexity for Incremental Autonomous Exploration in MDPs »
Jean Tarbouriech · Matteo Pirotta · Michal Valko · Alessandro Lazaric -
2020 Oral: Improved Sample Complexity for Incremental Autonomous Exploration in MDPs »
Jean Tarbouriech · Matteo Pirotta · Michal Valko · Alessandro Lazaric -
2019 Poster: Exact sampling of determinantal point processes with sublinear time preprocessing »
Michal Derezinski · Daniele Calandriello · Michal Valko -
2019 Poster: Planning in entropy-regularized Markov decision processes and games »
Jean-Bastien Grill · Omar Darwiche Domingues · Pierre Menard · Remi Munos · Michal Valko -
2019 Poster: On two ways to use determinantal point processes for Monte Carlo integration »
Guillaume Gautier · Rémi Bardenet · Michal Valko -
2019 Poster: Multiagent Evaluation under Incomplete Information »
Mark Rowland · Shayegan Omidshafiei · Karl Tuyls · Julien Perolat · Michal Valko · Georgios Piliouras · Remi Munos -
2019 Spotlight: Multiagent Evaluation under Incomplete Information »
Mark Rowland · Shayegan Omidshafiei · Karl Tuyls · Julien Perolat · Michal Valko · Georgios Piliouras · Remi Munos -
2018 Poster: Optimistic optimization of a Brownian »
Jean-Bastien Grill · Michal Valko · Remi Munos -
2017 Poster: Online Influence Maximization under Independent Cascade Model with Semi-Bandit Feedback »
Zheng Wen · Branislav Kveton · Michal Valko · Sharan Vaswani -
2017 Poster: Efficient Second-Order Online Kernel Learning with Adaptive Embedding »
Daniele Calandriello · Alessandro Lazaric · Michal Valko -
2016 Poster: Blazing the trails before beating the path: Sample-efficient Monte-Carlo planning »
Jean-Bastien Grill · Michal Valko · Remi Munos -
2016 Oral: Blazing the trails before beating the path: Sample-efficient Monte-Carlo planning »
Jean-Bastien Grill · Michal Valko · Remi Munos -
2015 Poster: Black-box optimization of noisy functions with unknown smoothness »
Jean-Bastien Grill · Michal Valko · Remi Munos · Remi Munos -
2014 Poster: Efficient learning by implicit exploration in bandit problems with side observations »
Tomáš Kocák · Gergely Neu · Michal Valko · Remi Munos -
2014 Poster: Online combinatorial optimization with stochastic decision sets and adversarial losses »
Gergely Neu · Michal Valko -
2012 Poster: Bandit Algorithms boost Brain Computer Interfaces for motor-task selection of a brain-controlled button »
Joan Fruitet · Alexandra Carpentier · Remi Munos · Maureen Clerc -
2012 Poster: Adaptive Stratified Sampling for Monte-Carlo integration of Differentiable functions »
Alexandra Carpentier · Remi Munos -
2012 Poster: Online allocation and homogeneous partitioning for piecewise constant mean-approximation »
Alexandra Carpentier · Odalric-Ambrym Maillard -
2011 Poster: Finite Time Analysis of Stratified Sampling for Monte Carlo »
Alexandra Carpentier · Remi Munos -
2011 Poster: Sparse Recovery with Brownian Sensing »
Alexandra Carpentier · Odalric-Ambrym Maillard · Remi Munos